GROUNDWATER SAMPLING, NAPL MONITORING/RECOVERY, AND GROUNDWATER TREATMENT PERFORMANCE REPORT FOR THE SECOND QUARTER OF 2011 (APRIL-JUNE)

HEMPSTEAD INTERSECTION STREET FORMER MANUFACTURED GAS PLANT SITE VILLAGES OF HEMPSTEAD AND GARDEN CITY NASSAU COUNTY, NEW YORK

Prepared for:

National Grid 175 East Old Country Rd. Hicksville, NY 11801

Prepared by:

URS Corporation 77 Goodell Street Buffalo, New York 14203

August 2011

## TABLE OF CONTENTS

| EXECUTIVE SUMMARY                                                                                                                                            | 1-1      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 1.0 INTRODUCTION                                                                                                                                             |          |
| 1.0 INTRODUCTION                                                                                                                                             | 2-1      |
| 2.0 FIELD ACTIVITIES                                                                                                                                         |          |
| 2.1 Groundwater Depth and NAPL Thickness Measurements                                                                                                        | 2-1      |
| 2.2 NAPL Recovery                                                                                                                                            |          |
| 2.3 Groundwater Sampling                                                                                                                                     |          |
| 2.4 Groundwater Treatment System Operation                                                                                                                   |          |
| 3.0 RESULTS                                                                                                                                                  | 3-1      |
| 3.1 Dissolved-Phase Plume                                                                                                                                    | 3-1      |
| 3.2 Potentiometric Heads and NAPL Thickness                                                                                                                  | 3-1      |
| 3.3 Groundwater Analytical Results                                                                                                                           | 3-1      |
| 3.4 NAPL Recovery Volumes                                                                                                                                    | 3-2      |
| 3.5 Groundwater Treatment System Performance                                                                                                                 | 3-2      |
| 4.0 SUMMARY                                                                                                                                                  | 4-4      |
| References                                                                                                                                                   | 4-1      |
| TABLES (Following Text)                                                                                                                                      |          |
| Table 1 Summary of Field Activities for the Second Quarter 2011                                                                                              |          |
| Table 2 Groundwater and NAPL Measurements for the Second Quarter 2011                                                                                        |          |
| Table 3 NAPL Recovery, for the Second Quarter 2011                                                                                                           |          |
| Table 4 Dissolved-Phase Concentrations of Total BTEX and Total PAH Composition the Second Quarter 2011  Table 5 Groundwater Treatment Performance Monitoring | unds for |

## **FIGURES**

(Following Tables)

| Figure 1  | Site Location Map                                                                                 |
|-----------|---------------------------------------------------------------------------------------------------|
| Figure 2  | Site Map                                                                                          |
| Figure 3  | Soil Remediation and Groundwater Treatment Locations                                              |
| Figure 4  | Extent of Dissolved-Phase Plume and Groundwater Analytical Results                                |
| Figure 5  | Potentiometric Surface Map for Shallow Groundwater, May 20, 2011                                  |
| Figure 6  | Potentiometric Surface Map for Intermediate Groundwater, May 20, 2011                             |
| Figure 7  | Potentiometric Surface Map for Deep Groundwater, May 20, 2011                                     |
| Figure 8  | Total Dissolved-Phase BTEX and PAH Concentrations and Free Product Thickness, Second Quarter 2011 |
| Figure 9A | Well HIMW-01S NAPL Thickness and Cumulative Recovery Plot                                         |
| Figure 9B | Well HIMW-01I NAPL Thickness and Cumulative Recovery Plot                                         |
| Figure 9C | Well HIMW-06S NAPL Thickness and Cumulative Recovery Plot                                         |
| Figure 9D | Well HIMW-06I NAPL Thickness and Cumulative Recovery Plot                                         |
| Figure 9E | Well HIMW-07S NAPL Thickness and Cumulative Recovery Plot                                         |
| Figure 9F | Well HIMW-11S NAPL Thickness and Cumulative Recovery Plot                                         |
| Figure 9G | Well HIMW-11I NAPL Thickness and Cumulative Recovery Plot                                         |
| Figure 9H | Well HIMW-16S NAPL Thickness and Cumulative Recovery Plot                                         |
| Figure 9I | Well HIMW-16I NAPL Thickness and Cumulative Recovery Plot                                         |
| Figure 9J | Well HIMW-17S NAPL Thickness and Cumulative Recovery Plot                                         |
| Figure 9K | Well HIMW-18S NAPL Thickness and Cumulative Recovery Plot                                         |
| Figure 9L | Well HIMW-18I NAPL Thickness and Cumulative Recovery Plot                                         |
| Figure 9M | Well HIMW-19S NAPL Thickness and Cumulative Recovery Plot                                         |
| Figure 9N | Well HIMW-19I NAPL Thickness and Cumulative Recovery Plot                                         |
| Figure 9O | Well HIMW-21 NAPL Thickness and Cumulative Recovery Plot                                          |
| Figure 9P | Well PZ-08 NAPL Thickness and Cumulative Recovery Plot                                            |
| Figure 9Q | Well IPR-02 NAPL Thickness and Cumulative Recovery Plot                                           |
| Figure 9R | Well IPR-05 NAPL Thickness and Cumulative Recovery Plot                                           |
| Figure 9S | Well IPR-06 NAPL Thickness and Cumulative Recovery Plot                                           |
| Figure 9T | Well IPR-07 NAPL Thickness and Cumulative Recovery Plot                                           |
| Figure 9U | Well IPR-09 NAPL Thickness and Cumulative Recovery Plot                                           |
| Figure 9V | Well IPR-12A NAPL Thickness and Cumulative Recovery Plot                                          |

| Figure 9W  | Well IPR-15 NAPL Thickness and Cumulative Recovery Plot |
|------------|---------------------------------------------------------|
| Figure 9X  | Well IPR-16 NAPL Thickness and Cumulative Recovery Plot |
| Figure 9Y  | Well IPR-17 NAPL Thickness and Cumulative Recovery Plot |
| Figure 9Z  | Well IPR-18 NAPL Thickness and Cumulative Recovery Plot |
| Figure 9AA | Well IPR-20 NAPL Thickness and Cumulative Recovery Plot |
| Figure 9AB | Well IPR-21 NAPL Thickness and Cumulative Recovery Plot |
| Figure 9AC | Well IPR-22 NAPL Thickness and Cumulative Recovery Plot |
| Figure 9AD | Well IPR-23 NAPL Thickness and Cumulative Recovery Plot |
| Figure 9AE | Well IPR-24 NAPL Thickness and Cumulative Recovery Plot |
| Figure 9AF | Well IPR-25 NAPL Thickness and Cumulative Recovery Plot |
| Figure 9AG | Well IPR-26 NAPL Thickness and Cumulative Recovery Plot |
| Figure 9AH | Well IPR-27 NAPL Thickness and Cumulative Recovery Plot |
| Figure 9AI | Well IPR-28 NAPL Thickness and Cumulative Recovery Plot |
| Figure 9AJ | Well IPR-29 NAPL Thickness and Cumulative Recovery Plot |
| Figure 9AK | Well IPR-30 NAPL Thickness and Cumulative Recovery Plot |

### **APPENDICES**

(Following Figures)

Appendix A Data Usability Summary Report

Appendix B Oxygen System Operation & Maintenance Measurements

#### **ACRONYMS AND ABBREVIATIONS**

amsl above mean sea level

BTEX benzene, toluene, ethylbenzene, xylenes

DNAPL dense non-aqueous phase liquid

DO dissolved oxygen

DUSR data usability summary report

ft foot (feet)

HIMW Hempstead Intersection Street Monitoring Well

IPR Intersection Street Product Recovery

LNAPL light non-aqueous phase liquid

MGP manufactured gas plant

MP monitoring points

NAPL non-aqueous phase liquid

ND not detected

NI not included

NM not measured

NYSDEC New York State Department of Environmental Conservation

ORP oxidation-reduction potential

PAHs polycyclic aromatic hydrocarbons

PZ piezometer QC quality control

RI remedial investigation

Sh sheen

TOR top of riser

URS URS Corporation

USEPA United States Environmental Protection Agency

μg/L micrograms per liter

#### **EXECUTIVE SUMMARY**

This report provides a summary of field activities, analytical results, and data interpretations associated with groundwater sampling and recovery of non-aqueous phase liquid (NAPL) at the Hempstead Intersection Street Former Manufactured Gas Plant (MGP) site during the second quarter (April, May, and June) of 2011.

Groundwater monitoring and sampling was conducted on May 23 through June 3, 2011. This included measuring the depth to groundwater and NAPL thickness in 82 wells. Groundwater samples were collected from 25 wells and analyzed for benzene, toluene, ethylbenzene, and xylenes (BTEX) and polycyclic aromatic hydrocarbons (PAHs).

NAPL monitoring and recovery was conducted on April 15, May 2-3, May 20, June 7-8, and June 23 for a total of 5 events in the second quarter of 2011.

Dissolved oxygen measurements were taken during the second quarter of 2011 for System No. 1 on May 20, May 27, and June 23 a total of 3 events and were taken for System No. 2 on April 12, April 28, May 13, May 26, June 10, and June 24 for a total of 6 events.

The following results were obtained from the groundwater sampling and NAPL monitoring/recovery events:

- The general direction of groundwater flow in shallow, intermediate, and deep waterbearing zones was south at an average gradient that ranged from approximately 0.002-0.003 feet per feet (ft/ft).
- The dissolved-phase plume extended up to approximately 3,600 ft south of the site boundary.
- Dense non-aqueous phase liquid (DNAPL) was detected in 25 wells during the second quarter of 2011. The wells were located on site or within a parking lot immediately south of the site.
- The volume of NAPL recovered from the site wells varied from approximately 10 to 15 gallons per event. Approximately 65 gallons of NAPL were recovered during the

#### **URS CORPORATION**

second quarter of 2011. Approximately 722 gallons of NAPL have been recovered since April 2007.

- Based on a comparison between the second quarter 2011 data and the previous data, the concentrations of total BTEX and total PAHs remained stable in the site monitoring wells.
- The first of two oxygen injection systems was brought on line in October 2010 and has successfully promoted increased aerobic conditions in the aquifer near the system during the second quarter of 2011.
- The second of two oxygen injection systems was brought on line in April 2011 and has successfully promoted increased aerobic conditions in the aquifer near the system during the second quarter of 2011.

#### 1.0 INTRODUCTION

This groundwater sampling and NAPL monitoring/ recovery report describes field activities and presents field measurements, NAPL thickness measurements and recovery volumes, and groundwater sampling analytical data associated with the Hempstead Intersection Street Former MGP site (refer to Figures 1 and 2). Interpretations of the data are also provided.

URS Corporation (URS) performed the following activities during the second quarter of 2011:

- Measured the depth to groundwater and NAPL thickness in accessible on site and off site monitoring wells (May 20, 2011).
- Collected groundwater samples from 25 monitoring wells for laboratory analysis (May 23- June 3, 2011).
- Recovered NAPL from accessible monitoring wells and piezometers (April 15, May 2-3, May 20, June 7-8, and June 23, 2011).

Fenely & Nicol Environmental, Inc. (F&N) performed water level measurement, well headspace monitoring with a photoionization detector (PID), and dissolved oxygen measurements to monitor the performance of the groundwater treatment systems for System No. 1 and System No. 2. System No. 1 monitoring was begun after system start up on April 27 and conducted on May 20, May 27, and June 23. System No. 2 monitoring was conducted on April 12, April 28, May 13, May 26, June 10, and June 24.

Quarterly groundwater monitoring and bimonthly recovery of NAPL was initiated in April 2007. Separate reports were issued for quarterly activities performed in 2007, 2008, 2009, and 2010, and annual reports were produced that encompassed work conducted in the four quarters of 2008, 2009, and 2010, with the annual report for 2007 summarizing the last three quarters.

#### 2.0 FIELD ACTIVITIES

The field activities performed by URS are summarized below.

- Measurement of the depth to groundwater and NAPL thickness in 82 monitoring wells.
- Collection of groundwater samples from 25 monitoring wells.
- Recovery of NAPL from accessible monitoring wells that contained measurable NAPL.

Monitoring wells and piezometers used for these activities are listed in Table 1.

F&N performed water level measurement, well headspace monitoring with a photoionization detector (PID), and dissolved oxygen measurements to monitor the performance of the groundwater treatment Systems No. 1 and No. 2.

#### 2.1 Groundwater Depth and NAPL Thickness Measurements

Depths to groundwater and NAPL thickness measurements are listed in Table 2. An electronic water level indicator was used to measure the depth to groundwater. NAPL thickness was measured using a weighted cotton string that absorbs oil.

#### 2.2 NAPL Recovery

NAPL was recovered from 25 wells during five events from April to July 2011 (Table 3). All measured NAPL consisted of dense non-aqueous phase liquid (DNAPL) located at the bottom of the wells. Recovery of NAPL was conducted using the appropriate personal protective equipment. First, all accessible wells included in the recovery program were gauged using an oil/water interface probe to determine the depth to water and the depth and thickness to any possible light non-aqueous phase liquid (LNAPL) at the top of the water column. Wells were then gauged with a weighted cotton string to measure the DNAPL thickness. The DNAPL was recovered using either a Waterra inertial lift pump, or a dedicated bailer if the DNAPL was particularly viscous. Water and product that were recovered were stored in 55-gallon steel drums for subsequent offsite disposal.

The quantity of the recovered DNAPL was estimated as the volume of NAPL contained inside the well prior to pumping, based on the cross sectional area of the well screen multiplied by the measured NAPL thickness.

#### 2.3 Groundwater Sampling

Low-flow groundwater sampling methods were used, which consisted of purging groundwater at a rate of between 100 and 250 milliliters per minute. The water was pumped through a flow-through cell and monitored for pH, conductivity, turbidity, dissolved oxygen (DO), temperature, and oxidation-reduction potential (ORP). Purging was continued until stable conditions were achieved (defined as three consecutive stable readings [i.e.  $\pm$  10 percent] over a 15 minute period). Groundwater samples were collected afterwards and shipped under chain-of-custody procedures to H2M laboratories, Inc. for analysis of BTEX (United States Environmental Protection Agency [USEPA] Method 8260B) and PAHs (USEPA Method 8270C). Purge water is stored in an onsite storage tank for subsequent offsite disposal under a non-hazardous waste manifest.

#### 2.4 Groundwater Treatment System Operation

National Grid completed the construction of the second of two oxygen injection systems in May 2011 to treat groundwater in the downgradient plume. The first system to be completed, designated "System No. 2", extends from Mirschel Park in the east to Kensington Court in the west. The second system to be completed, designated "System No. 1", is located along Smith Street, a portion of the Long Island Railroad Right of Way, and a portion of Hilton Avenue. See Figure 3 for the locations of the two systems. The performance of System No. 1 and System No. 2 was monitored through measurement of oxygen levels in the groundwater approximately twice per month, see Table 5. The full system data is included in Appendix C and shows the systems are effective in increasing the dissolved oxygen levels to augment biodegradation of dissolved phase MGP compounds in groundwater.

#### 3.0 RESULTS

#### 3.1 Dissolved-Phase Plume

The extent of the dissolved-phase groundwater plume boundary is shown in Figure 4. The downgradient boundary of the plume, which is defined by total BTEX or PAH concentrations greater than  $100~\mu g/L$ , extends approximately 3,600 feet south of the site boundary. Based on comparison with previous quarterly groundwater monitoring data, the concentrations of total BTEX or PAHs in groundwater have remained stable.

In May 2011, the concentrations of total BTEX and total PAHs in the furthest downgradient well pair (HIMW-15I/D) ranged from "not detected" (deep well, HIMW-15D) to 31  $\mu$ g/L of total BTEX (intermediate well, HIMW-15I). The concentrations of total BTEX and total PAHs in wells located between the site and the HIMW-15 cluster varied from "not detected" to 2,120  $\mu$ g/L of total PAHs (intermediate well, HIMW-5I), see Table 4.

#### 3.2 Potentiometric Heads and NAPL Thickness

Potentiometric heads and NAPL thickness measurements are presented in Table 2. Potentiometric surface maps for shallow, intermediate and deep groundwater zones were developed using this data and are shown in Figures 5, 6, and 7, respectively. The data indicates that the direction of groundwater flow within the well field was south at an average gradient that ranged from approximately 0.002-0.003 ft/ft.

DNAPL was detected in 25 wells during the second quarter 2011 (Table 3). Figure 8 illustrate the thickness of DNAPL that was measured on May 20, 2011. Figures 9A through 9AK provide cumulative NAPL recovery amounts and NAPL thickness plots for the period of December 2003 through June 2011. All of the wells where DNAPL was identified are either on the site or within a parking lot that is immediately south of the site.

### 3.3 Groundwater Analytical Results

Groundwater analytical results are summarized in Table 4 and illustrated on Figures 4 & 8.

A Data Usability Summary Report (DUSR) was prepared following the guidelines provided in New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation DER-10, Technical Guidance for Site Investigation and Remediation, Appendix 2B – Guidance for the Development of Data Usability Summary Reports, May 2010. An electronic copy of the DUSR is included as Appendix A. The review included a review of holding times; completeness of all required deliverables; quality control (QC) results (blanks, instrument tunes, calibration standards, matrix spike recoveries, duplicate analyses, and laboratory control sample recoveries) to determine if the data are within the protocol-required QC limits and specifications; a determination that all samples were analyzed using established and agreed upon analytical protocols; an evaluation of the raw data to confirm the results provided in the data summary sheets; and a review of laboratory data qualifiers. All sample analyses were found to be compliant with the method and validation criteria and the data is useable as reported.

#### 3.4 NAPL Recovery Volumes

Approximately 65 gallons of NAPL were recovered from 25 wells (Table 3). The volume of NAPL recovered during each event varied from approximately 10 to 15 gallons per event. Approximately 722 gallons of NAPL have been recovered since April 2007.

#### 3.5 Groundwater Treatment System Performance

The groundwater treatment System No. 2 started operation on October 11, 2010. Bimonthly monitoring includes measurement of water depth, dissolved oxygen concentration, and headspace vapors by photoionization detector monitoring. A summary of the data collected from the monitoring points is presented on Table 5.

By delivering approximately 90% oxygen gas into the aquifer, maximum dissolved oxygen concentrations in the range of 40 - 50 mg/L can be achieved at saturation. Concentrations in this range were observed in the wells located more towards the center of the System No. 2 line of oxygen delivery wells (monitoring points MP-2-3S and MP-2-3D), with lower concentrations observed at either end of the system. Oxygen concentrations in June were lower than those observed in April and May with an increase in head space concentration based on PID readings, particularly at the ends of the delivery lines.

The performance of System No. 2 has been effective in raising the oxygen level sufficiently to support aerobic bacterial growth and attendant hydrocarbon degradation. Throughout all monitoring points, the dissolved oxygen level is above 5.2 mg/L, providing an aerobic environment. Measurement of dissolved oxygen levels below the saturated range of 40 - 50 mg/L at locations such as MP-2-2 and MP-2-4 suggests that bacterial activity is especially active in these locations; consumption of the oxygen in these locations would correspond to degradation of hydrocarbons, presumed to be the primary carbon source for the bacteria.

The groundwater treatment System No. 1 started operation on April 27, 2011. Bimonthly monitoring includes measurement of water depth, dissolved oxygen concentration, and headspace vapors by photoionization detector monitoring. A summary of the data collected from the monitoring points is presented on Table 5.

Oxygen concentrations were generally lower in System #1 compared to System #2. This reflects the higher concentrations of groundwater contamination in this location nearer to the source, which would result in a faster consumption of oxygen during degradation. However, oxygen concentration up the 40 - 50 mg/L range were noticed at startup in the wells located most towards the eastern side of the System No. 1 line of injection wells (monitoring points MP-1-2D and MP-1-4D), and in MP-1-3D in June.

The performance of System No. 1 has been effective in raising the oxygen level sufficiently to support aerobic bacterial growth and attendant hydrocarbon degradation. With the exception of MP-1-7 (and to a lesser extent MP-1-8 at the start of treatment), the dissolved oxygen level is above 5 mg/L, providing an aerobic environment. Measurement of dissolved oxygen levels below the saturated range of 40 - 50 mg/L at most System No. 1 monitoring points suggests that bacterial activity is especially active; faster consumption of the oxygen corresponds to faster degradation of hydrocarbons, presumed to be primary carbon source for the bacteria.

#### 4.0 SUMMARY

Following is a summary of the second quarter 2011 groundwater sampling and NAPL monitoring/recovery data presented in this report:

- The general direction of groundwater flow in shallow, intermediate, and deep water-bearing zones was south at an average gradient of 0.002-0.003 ft/ft.
- The dissolved-phase plume extended up to approximately 3,600 feet south of the site boundary.
- DNAPL was detected in 25 wells during the second quarter of 2011. The wells were located on site or within a parking lot immediately south of the site.
- The total volume of NAPL recovered from all the site wells each event varied from approximately 6 to 15 gallons. Approximately 65 gallons of NAPL were recovered during the second quarter of 2011. Approximately 722 gallons of NAPL have been recovered since April 2007.
- Based on a comparison between the second quarter 2011 data and the previous data, the concentrations of total BTEX and total PAHs remained stable in the site monitoring wells.
- The first of two oxygen injection systems was brought on line in October 2010 and has successfully promoted increased aerobic conditions in the aquifer near the system.
- The second of two oxygen injection systems was brought on line in April 2011 and has successfully promoted increased aerobic conditions in the aquifer near the system during the second quarter of 2011.

#### REFERENCES

- URS, 2007. Groundwater Sampling and NAPL Monitoring/Recovery Report for the Second and Third Quarters of 2007 (April 2007 and July-August 2007) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. November.
- URS, 2008a. 2007 Annual Groundwater Sampling and NAPL Monitoring/Recovery Report for the Hempstead Intersection Street Former Manufactured Gas Plant Site. February.
- URS, 2008b. Groundwater Sampling and NAPL Monitoring/Recovery Report for the First Quarter of 2008 (January March 2008) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. June.
- URS, 2008c. Groundwater Sampling and NAPL Monitoring/Recovery Report for the Second Quarter of 2008 (April June 2008) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. October.
- URS, 2009a. Groundwater Sampling and NAPL Monitoring/Recovery Report for the Third Quarter of 2008 (July September 2008) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. January.
- URS, 2009b. 2008 Annual Groundwater Sampling and NAPL Monitoring/Recovery Report for the Hempstead Intersection Street Former Manufactured Gas Plant Site. March.
- URS, 2009c. Groundwater Sampling and NAPL Monitoring/Recovery Report for the First Quarter of 2009 (January March 2009) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. June.
- URS, 2009d. Groundwater Sampling and NAPL Monitoring/Recovery Report for the Second Quarter of 2009 (April June 2009) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. September.
- URS, 2009e. Groundwater Sampling and NAPL Monitoring/Recovery Report for the Third Quarter of 2009 (July September 2009) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. November.
- URS, 2010a. 2009 Annual Groundwater Sampling and NAPL Monitoring/Recovery Report for the Hempstead Intersection Street Former Manufactured Gas Plant Site. February.
- URS, 2010b. Groundwater Sampling and NAPL Monitoring/Recovery Report for the First Quarter of 2010 (January March 2010) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. April.
- URS, 2010c. Groundwater Sampling and NAPL Monitoring/Recovery Report for the Second Quarter of 2010 (April June 2010) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. September.

- URS, 2010d. Groundwater Sampling and NAPL Monitoring/Recovery Report for the Third Quarter of 2010 (July September 2010) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. December.
- URS, 2010e. 2010 Annual Groundwater Sampling and NAPL Monitoring/Recovery Report for the Hempstead Intersection Street Former Manufactured Gas Plant Site. December.
- URS, 2011a. Groundwater Sampling and NAPL Monitoring/Recovery Report for the First Quarter of 2011 (January March 2011) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. July.

# **TABLES**

Table 1

Summary of Field Activities for the Second Quarter 2011 (1), (2)

Hempstead Intersection Street Former MGP Site

|                        |       | lonitoring & San<br>y 23- June 3, 20 |         | NAPI     | _ Monitoring                          | and DNAPI | Recovery F | vents    |
|------------------------|-------|--------------------------------------|---------|----------|---------------------------------------|-----------|------------|----------|
| Well ID                | Water | NAPL NAPL                            | Water   | Apr 15,  | May 2-3,                              | May 20,   | June 7-8,  | June 23, |
|                        | Level | Thickness                            | Quality | 2011     | 2011                                  | 2011      | 2011       | 2011     |
| HIMW-001S              | X     | Х                                    |         |          | X                                     | Χ         | Х          |          |
| HIMW-001I              | Х     | Х                                    |         | Х        | Х                                     | Χ         | Х          |          |
| HIMW-001D*             |       |                                      |         |          |                                       |           |            |          |
| HIMW-002S              | X     | X                                    |         |          |                                       |           |            |          |
| HIMW-002I              | Х     | Х                                    |         |          |                                       |           |            |          |
| HIMW-002D              | X     | X                                    |         |          |                                       |           |            |          |
| HIMW-003S              | X     | Х                                    | Χ       |          |                                       |           |            |          |
| HIMW-003I              | Х     | Х                                    | Χ       |          |                                       |           |            |          |
| HIMW-003D              | Х     | Х                                    | Χ       |          |                                       |           |            |          |
| HIMW-004S              | Х     | Х                                    |         |          |                                       |           |            |          |
| HIMW-004I              | X     | X                                    |         |          |                                       |           |            |          |
| HIMW-004D              | X     | X                                    |         |          |                                       |           |            |          |
| HIMW-005S              | X     | X                                    | X       |          |                                       |           | <u> </u>   |          |
| HIMW-005I              | X     | X                                    | X<br>X  |          |                                       |           |            |          |
| HIMW-005D              | X     | X                                    | X       | V        | V                                     | V         | V          | V        |
| HIMW-006S<br>HIMW-006I | X     | X                                    |         | Х        | X                                     | X         | X          | Х        |
| HIMW-006D              | X     | X                                    |         |          | ^                                     | ^         | X          |          |
| HIMW-007S              | X     | X                                    |         | Х        | Х                                     | Х         | X          | Х        |
| HIMW-0073              | X     | X                                    |         | ^        | X                                     | ^         | X          | ^        |
| HIMW-007D              | X     | X                                    |         |          | X                                     |           | X          |          |
| HIMW-007B              | X     | X                                    | Χ       |          | ^                                     |           | ^          |          |
| HIMW-0085              | X     | X                                    | X       |          |                                       |           |            |          |
| HIMW-008D              | X     | X                                    | X       |          |                                       |           |            |          |
| HIMW-009S              | X     | X                                    |         |          |                                       |           |            |          |
| HIMW-009I              | X     | X                                    |         |          |                                       |           |            |          |
| HIMW-009D              | X     | X                                    |         |          |                                       |           |            |          |
| HIMW-010S              | X     | X                                    |         |          |                                       |           |            |          |
| HIMW-010I              | X     | X                                    |         |          |                                       |           |            |          |
| HIMW-010D              | X     | X                                    |         |          |                                       |           |            |          |
| HIMW-011S              | Х     | Х                                    |         |          |                                       |           | Х          |          |
| HIMW-011I              | Х     | Х                                    |         |          | Х                                     |           |            |          |
| HIMW-011D              | Х     | Х                                    |         |          |                                       |           |            |          |
| HIMW-012S              | Х     | Х                                    | Χ       |          |                                       |           |            |          |
| HIMW-012I              | X     | X                                    | Χ       |          |                                       |           |            |          |
| HIMW-012D              | X     | X                                    | Х       |          |                                       |           |            |          |
| HIMW-013S              | Х     | Х                                    | Χ       |          |                                       |           |            |          |
| HIMW-013I              | X     | Х                                    | Х       |          |                                       |           |            |          |
| HIMW-013D              | X     | Х                                    | Χ       |          |                                       |           |            |          |
| HIMW-014I              | X     | X                                    | X       |          |                                       |           |            |          |
| HIMW-014D              | X     | X                                    | X       |          |                                       |           |            |          |
| HIMW-015I              | X     | X                                    | X       |          |                                       |           |            |          |
| HIMW-015D              | Х     | Х                                    | Х       |          | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |           |            |          |
| HIMW-016S              |       |                                      |         |          | X                                     |           | -          |          |
| HIMW-016I              |       |                                      |         | V        | X                                     |           | V          | V        |
| HIMW-017S<br>HIMW-018S | V     |                                      |         | Х        | X                                     |           | X          | Х        |
|                        | X     | X                                    |         |          | X                                     |           | X          |          |
| HIMW-018I<br>HIMW-019S | X     | X                                    |         |          | X                                     |           | X          |          |
| HIMW-019I              | X     | X                                    |         |          | X                                     |           | X          |          |
| HIMW-20S               | X     | X                                    | X       |          | _ ^                                   |           | ^          |          |
| HIMW-20I               | X     | X                                    | X       |          |                                       |           |            |          |
| 1 111VIVV-ZUI          | ^     | ^                                    | ^       | <u> </u> |                                       |           | <u> </u>   | <u> </u> |

Table 1

Summary of Field Activities for the Second Quarter 2011 (1), (2)

Hempstead Intersection Street Former MGP Site

| Well ID  |       | onitoring & Sam<br>y 23- June 3, 20 |         | NAPL    | _ Monitoring | and DNAPL | . Recovery E | vents    |
|----------|-------|-------------------------------------|---------|---------|--------------|-----------|--------------|----------|
| Well ID  | Water | NAPL                                | Water   | Apr 15, | May 2-3,     | May 20,   | June 7-8,    | June 23, |
|          | Level | Thickness                           | Quality | 2011    | 2011         | 2011      | 2011         | 2011     |
| HIMW-21  |       |                                     |         |         |              |           | Х            | Χ        |
| HIMW-22  | Χ     | Х                                   | Х       |         |              |           |              |          |
| HIMW-23  | Χ     | Х                                   | Х       |         |              |           |              |          |
| HIMW-24  | Χ     | Х                                   | Х       |         |              |           |              |          |
| HIMW-25  | Χ     | Х                                   | Х       |         |              |           |              |          |
| PZ-02    |       |                                     |         |         |              |           |              |          |
| PZ-03    |       |                                     |         |         |              |           |              |          |
| PZ-08    | Χ     | Х                                   |         | Х       | Х            | Х         | Х            | Х        |
| IPR-01   | Χ     | Х                                   |         |         | Х            |           | Х            |          |
| IPR-02   | Χ     | Х                                   |         | Х       | Х            | Х         | Х            | Х        |
| IPR-03   | Χ     | Х                                   |         |         | Х            |           | Х            |          |
| IPR-04   | Χ     | Х                                   |         |         | Х            |           | Х            |          |
| IPR-05   | Χ     | Х                                   |         |         |              |           |              |          |
| IPR-06   | Χ     | Х                                   |         | Х       | Х            | Х         | Х            | Х        |
| IPR-07   | Χ     | Х                                   |         |         | Х            |           | Х            |          |
| IPR-08   | Χ     | Х                                   |         |         | Х            |           | Х            |          |
| IPR-09   | Χ     | Х                                   |         | Х       | Х            |           | Х            |          |
| IPR-10   | Χ     | Х                                   |         |         | Х            |           | Х            |          |
| IPR-11   | Χ     | Х                                   |         |         | Х            |           | Х            |          |
| IPR-12A  | Χ     | Х                                   |         |         | Х            |           | Х            |          |
| IPR-12B  | Х     | Х                                   |         |         | Х            |           | Х            |          |
| IPR-13   | Χ     | Х                                   |         |         | Х            |           | Х            |          |
| IPR-14   | Χ     | Х                                   |         |         | Х            |           | Х            |          |
| IPR-15   | Χ     | Х                                   |         |         | Х            |           | Х            |          |
| IPR-16   | Χ     | Х                                   |         | Х       | Х            |           | Х            | Х        |
| IPR-17   | Χ     | Х                                   |         | Х       | Х            | Х         | Х            | Х        |
| IPR-18   | Χ     | Х                                   |         |         | Х            |           | Х            |          |
| IPR-19S* |       |                                     |         |         |              |           |              |          |
| IPR-19D  | Χ     | Х                                   |         |         | Х            |           | Х            |          |
| IPR-20   |       |                                     |         | Х       | Х            |           | Х            |          |
| IPR-21   | Χ     | Х                                   |         | Х       | Х            | Х         | Х            | Χ        |
| IPR-22   | Χ     | Х                                   |         |         | Х            | Х         | Х            | Х        |
| IPR-23   | Χ     | Х                                   |         |         | Х            |           | Х            |          |
| IPR-24   | Χ     | Х                                   |         |         | Х            |           | Х            |          |
| IPR-25   | Χ     | Х                                   |         | Х       |              | Х         | Х            | Х        |
| IPR-26   |       |                                     |         | Χ       | Х            |           |              |          |
| IPR-27   | Х     | Х                                   |         | Х       | Х            | Х         | Х            | Х        |
| IPR-28   | X     | X                                   |         |         | X            | X         |              | X        |
| IPR-29   | X     | X                                   |         | Χ       | X            | X         | Х            | X        |
| IPR-30   |       |                                     |         | X       | X            |           | X            |          |
| OSMW-01  | Х     | Х                                   |         |         |              |           |              |          |
| OSMW-02  | X     | X                                   |         |         |              |           | Х            |          |
| OSMW-03  | Χ     | X                                   |         |         |              |           | Х            |          |

#### Notes:

- 1 Field marked with "X" indicates that the activity was performed.
- 2 Blank field indicates that the activity was not performed.
- \* IPR-19S is covered with cold patch and is inaccessible. HIMW-001D riser is damaged and is unusable.

# Table 2 Groundwater and NAPL Measurements Second Quarter 2011 Hempstead Intersection Street Former MGP Site

| Well ID              | Date            | Elevation of TOR | Depth to LNAPL | Depth to<br>Water | Depth to<br>DNAPL | Well<br>Depth | Thickness of LNAPL | Thickness of DNAPL | Corrected<br>Potentiometric<br>Head (1) |
|----------------------|-----------------|------------------|----------------|-------------------|-------------------|---------------|--------------------|--------------------|-----------------------------------------|
|                      |                 | [ft amsl]        | [ft]           | [ft]              | [ft]              | [ft]          | [ft]               | [ft]               | [ft amsl]                               |
| HIMW-01S             | 5/20/2011       | 71.61            | ND             | 23.41             | ND                | 40.9          | 0                  | 0.00               | 48.20                                   |
| HIMW-01I             | 5/20/2011       | 71.68            | ND             | 23.55             | 85.60             | 85.9          | 0                  | 0.30               | 48.13                                   |
| HIMW-01D             | NM              | 71.95            | NM             | NM                | NM                | 129.1         | NM                 | NM                 | NM                                      |
| HIMW-02S             | 5/20/2011       | 73.82            | ND             | 25.41             | ND                | 42.4          | 0                  | 0.00               | 48.41                                   |
| HIMW-02I             | 5/20/2011       | 78.87            | ND             | 25.46             | ND                | 92.9          | 0                  | 0.00               | 53.41                                   |
| HIMW-02D             | 5/20/2011       | 74.13            | ND             | 25.70             | ND                | 119.0         | 0                  | 0.00               | 48.43                                   |
| HIMW-03S             | 5/20/2011       | 65.00            | ND             | 16.99             | ND                | 34.8          | 0                  | 0.00               | 48.01                                   |
| HIMW-03I             | 5/20/2011       | 64.94            | ND             | 17.22             | ND                | 87.1          | 0                  | 0.00               | 47.72                                   |
| HIMW-03D             | 5/20/2011       | 65.26            | ND             | 17.82             | ND                | 145.5         | 0                  | 0.00               | 47.44                                   |
| HIMW-04S             | 5/20/2011       | 72.74            | ND             | 24.39             | ND                | 41.7          | 0                  | 0.00               | 48.35                                   |
| HIMW-04I             | 5/20/2011       | 72.78            | ND             | 25.49             | ND                | 90.6          | 0                  | 0.00               | 47.29                                   |
| HIMW-04D             | 5/20/2011       | 72.65            | ND             | 25.91             | ND                | 180.5         | 0                  | 0.00               | 46.74                                   |
| HIMW-05S             | 5/20/2011       | 67.19            | ND             | 19.65             | ND                | 39.1          | 0                  | 0.00               | 47.54                                   |
| HIMW-05I             | 5/20/2011       | 67.22            | ND             | 19.84             | ND                | 92.3          | 0                  | 0.00               | 47.38                                   |
| HIMW-05D             | 5/20/2011       | 67.22            | ND             | 20.38             | ND                | 139.0         | 0                  | 0.00               | 46.84                                   |
| HIMW-06S             | 5/20/2011       | 68.25            | ND             | 20.41             | 34.90             | 36.9          | 0                  | 2.00               | 47.84                                   |
| HIMW-06I             | 5/20/2011       | 67.88            | ND             | 20.61             | 82.20             | 82.2          | 0                  | blebs              | 47.27                                   |
| HIMW-06D             | 5/20/2011       | 67.77            | ND             | 20.52             | ND                | 120.0         | 0                  | 0.00               | 47.25                                   |
| HIMW-07S             | 5/20/2011       | 70.47            | ND             | 22.60             | 38.70             | 40.7          | 0                  | 2.00               | 47.87                                   |
| HIMW-07I             | 5/20/2011       | 70.10            | ND             | 21.57             | ND                | 90.6          | 0                  | 0.00               | 48.53                                   |
| HIMW-07D             | 5/20/2011       | 70.40            | ND             | 22.51             | ND                | 117.7         | 0                  | 0.00               | 47.89                                   |
| HIMW-08S             | 5/20/2011       | 65.04            | ND             | 17.91             | ND                | 37.1          | 0                  | 0.00               | 47.13                                   |
| HIMW-08I             | 5/20/2011       | 65.14            | ND             | 18.10             | ND                | 75.1          | 0                  | 0.00               | 47.04                                   |
| HIMW-08D             | 5/20/2011       | 64.93            | ND             | 18.94             | ND                | 114.8         | 0                  | 0.00               | 45.99                                   |
| HIMW-09S             | 5/20/2011       | 70.03            | ND             | 22.41             | ND                | 39.6          | 0                  | 0.00               | 47.62                                   |
| HIMW-09I             | 5/20/2011       | 69.93            | ND             | 22.31             | ND                | 80.5          | 0                  | 0.00               | 47.62                                   |
| HIMW-09D             | 5/20/2011       | 69.96            | ND             | 22.41             | ND                | NM            | 0                  | 0.00               | 47.55                                   |
| HIMW-10S             | 5/20/2011       | 71.60            | ND             | 23.54             | ND                | 40.3          | 0                  | 0.00               | 48.06                                   |
| HIMW-10I             | 5/20/2011       | 71.47            | ND             | 23.39             | ND                | 91.8          | 0                  | 0.00               | 48.08                                   |
| HIMW-10D             | 5/20/2011       | 71.44            | ND             | 23.35             | ND                | 136.0         | 0                  | 0.00               | 48.09                                   |
| HIMW-11S             | 5/20/2011       | 71.62            | ND             | 23.20             | ND                | 41.6          | 0                  | 0.00               | 48.42                                   |
| HIMW-11I             | 5/20/2011       | 71.43            | ND             | 23.22             | ND                | 94.5          | 0                  | 0.00               | 48.21                                   |
| HIMW-11D             | 5/20/2011       | 71.39            | ND             | 23.24             | ND                | 123.6         | 0                  | 0.00               | 48.15                                   |
| HIMW-12S             | 5/20/2011       | 61.58            | ND             | 15.64             | ND                | 33.5          | 0                  | 0.00               | 45.94                                   |
| HIMW-12I             | 5/20/2011       | 61.59            | ND             | 15.54             | ND                | 75.0          | 0                  | 0.00               | 46.05                                   |
| HIMW-12D             | 5/20/2011       | 61.82            | ND             | 17.49             | ND                | 128.5         | 0                  | 0.00               | 44.33                                   |
| HIMW-13S             | 5/20/2011       | 72.83            | ND             | 28.90             | ND                | 49.2          | 0                  | 0.00               | 43.93                                   |
| HIMW-13I             | 5/20/2011       | 72.60            | ND             | 28.70             | ND                | 82.6          | 0                  | 0.00               | 43.90                                   |
| HIMW-13D             | 5/20/2011       | 72.53            | ND             | 28.67             | ND                | 122.5         | 0                  | 0.00               | 43.86                                   |
| HIMW-14I             | 5/20/2011       | 71.71            | ND             | 27.81             | ND                | 96.9          | 0                  | 0.00               | 43.90                                   |
| HIMW-14D             | 5/20/2011       | 71.59            | ND             | 30.12             | ND                | 152.0         | 0                  | 0.00               | 41.47                                   |
| HIMW-15I             | 5/20/2011       | 64.18            | ND             | 23.39             | ND                | 93.1          | 0                  | 0.00               | 40.79                                   |
| HIMW-15D             | 5/20/2011       | 63.96            | ND             | 23.72             | ND                | 155.0         | 0                  | 0.00               | 40.24                                   |
| HIMW-16S             | NM              | 67.45            | NM             | NM                | NM                | 34.4          | NM                 | NM                 | NM                                      |
| HIMW-16I             | NM              | 67.50            | ND             | NM                | NM                | 82.7          | NM                 | NM                 | NM                                      |
| HIMW-17S             | NM<br>5/20/2011 | 65.96            | ND             | NM<br>21.56       | NM                | 36.7          | NM                 | NM<br>0.00         | NM                                      |
| HIMW-18S             | 5/20/2011       | 69.76            | ND             | 21.56             | ND                | 42.1          | 0                  | 0.00               | 48.20                                   |
| HIMW-18I             | 5/20/2011       | 69.70            | ND             | 21.66             | ND                | 71.2          | 0                  | 0.00               | 48.04                                   |
| HIMW-19S             | 5/20/2011       | 70.95            | ND             | 22.64             | ND                | 39.4          | 0                  | 0.00               | 48.31                                   |
| HIMW-19I             | 5/20/2011       | 71.27            | ND             | 22.81<br>NM       | ND                | 68.9          | 0                  | 0.00               | 48.46                                   |
| HIMW-20S<br>HIMW-20I | NM<br>NM        | 70.43<br>70.30   | NM<br>NM       | NM<br>NM          | NM<br>NM          | 35.0<br>73.0  | NM<br>NM           | NM<br>NM           | NM<br>NM                                |
| 1 111VIVV-ZUI        | I AIAI          | 10.30            | INIVI          | INIVI             | INIVI             | 73.0          | INIVI              | INIVI              | IAINI                                   |

# Table 2 Groundwater and NAPL Measurements Second Quarter 2011 Hempstead Intersection Street Former MGP Site

|              |           | Elevetion        | Donth to          | Donth to          | Donth to          | Well          | Thickness          | Thickness          | Corrected      |
|--------------|-----------|------------------|-------------------|-------------------|-------------------|---------------|--------------------|--------------------|----------------|
| Well ID      | Date      | Elevation of TOR | Depth to<br>LNAPL | Depth to<br>Water | Depth to<br>DNAPL | Well<br>Depth | Thickness of LNAPL | Thickness of DNAPL | Potentiometric |
| Well ID      | Date      |                  |                   |                   |                   | •             |                    |                    | Head (1)       |
|              |           | [ft amsl]        | [ft]              | [ft]              | [ft]              | [ft]          | [ft]               | [ft]               | [ft amsl]      |
| HIMW-21      | NM        | NM               | NM                | NM                | NM                | 45.3          | 0                  | NM                 | NM             |
| HIMW-22      | 5/20/2011 |                  | ND                | 17.81             | ND                |               | 0                  | 0.00               |                |
| HIMW-23      | 5/20/2011 |                  | ND                | 15.41             | ND                |               | 0                  | 0.00               |                |
| HIMW-24      | 5/20/2011 |                  | ND                | 29.00             | ND                |               | 0                  | 0.00               |                |
| HIMW-25      | 5/20/2011 |                  | ND                | 28.75             | ND                |               | 0                  | 0.00               |                |
| PZ-02        | NM        | 72.96            | NM                | NM                | NM                | 35.3          | NM                 | NM                 | NM             |
| PZ-03        | NM        | 64.58            | NM                | NM                | NM                | 29.5          | NM                 | NM                 | NM             |
| PZ-08        | 5/20/2011 | 70.51            | ND                | 21.56             | 34.6              | 35.5          | 0                  | 0.90               | 48.95          |
| IPR-01       | 5/20/2011 | 70.30            | ND                | 21.93             | ND                | 41.9          | 0                  | 0.00               | 48.37          |
| IPR-02       | 5/20/2011 | 68.84            | ND                | 20.86             | 69.6              | 70.3          | 0                  | 0.70               | 47.98          |
| IPR-03       | 5/20/2011 | 69.16            | ND                | 20.97             | ND                | 44.7          | 0                  | 0.00               | 48.19          |
| IPR-04       | 5/20/2011 | 69.23            | ND                | 21.10             | ND                | 84.4          | 0                  | 0.00               | 48.13          |
| IPR-05       | 5/20/2011 | 70.39            | ND                | 22.33             | ND                | 52.1          | 0                  | 0.00               | 48.06          |
| IPR-06       | 5/20/2011 | 70.79            | ND                | 22.81             | 54.5              | 55.4          | 0                  | 0.90               | 47.98          |
| IPR-07       | 5/20/2011 | 69.73            | ND                | 20.94             | ND                | 38.0          | 0                  | 0.00               | 48.79          |
| IPR-08       | 5/20/2011 | 70.51            | ND                | 22.55             | ND                | 40.3          | 0                  | 0.00               | 47.96          |
| IPR-09       | 5/20/2011 | 70.00            | ND                | 22.05             | ND                | 45.0          | 0                  | 0.00               | 47.95          |
| IPR-10       | 5/20/2011 | 70.80            | ND                | 22.70             | ND                | 44.8          | 0                  | 0.00               | 48.10          |
| IPR-11       | 5/20/2011 | 68.29            | ND                | 20.42             | ND                | 44.6          | 0                  | 0.00               | 47.87          |
| IPR-12A      | 5/20/2011 | 70.14            | ND                | 20.69             | ND                | 38.1          | 0                  | 0.00               | 49.45          |
| IPR-12B      | 5/20/2011 | 69.56            | ND                | 22.23             | ND                | 45.2          | 0                  | 0.00               | 47.33          |
| IPR-13       | 5/20/2011 | 70.77            | ND                | 22.75             | ND                | 44.4          | 0                  | 0.00               | 48.02          |
| IPR-14       | 5/20/2011 | 66.93            | ND                | 19.15             | ND                | 44.4          | 0                  | 0.00               | 47.78          |
| IPR-15       | 5/20/2011 | 67.93            | ND                | 20.10             | ND                | 44.4          | 0                  | 0.00               | 47.83          |
| IPR-16       | 5/20/2011 | 69.49            | ND                | 21.61             | ND                | 49.1          | 0                  | 0.00               | 47.88          |
| IPR-17       | 5/20/2011 | 70.60            | ND                | 22.20             | 53.50             | 54.1          | 0                  | 0.60               | 48.40          |
| IPR-18       | 5/20/2011 | 66.87            | ND                | 19.22             | ND                | 50.0          | 0                  | 0.00               | 47.65          |
| IPR-19S      | NM        | 67.68            | NM                | NM                | NM                | 45.1          | NM                 | NM                 | NM             |
| IPR-19D      | 5/20/2011 | 67.96            | ND                | 20.31             | ND                | 89.9          | 0                  | 0.00               | 47.65          |
| IPR-20       | NM        | 66.70            | NM                | NM                | NM                | 45.4          | NM                 | NM                 | NM             |
| IPR-21       | 5/20/2011 | 67.67            | ND                | 19.22             | 44.20             | 45.0          | 0                  | 0.80               | 48.45          |
| IPR-22       | 5/20/2011 | 66.33            | ND                | 18.90             | 43.90             | 45.4          | 0                  | 1.50               | 47.43          |
| IPR-23       | 5/20/2011 | 66.67            | ND                | 19.22             | ND                | 45.4          | 0                  | 0.00               | 47.45          |
| IPR-24       | 5/20/2011 | 65.88            | ND                | 18.55             | ND                | 44.4          | 0                  | 0.00               | 47.33          |
| IPR-25       | 5/20/2011 | 70.56            | ND                | 22.30             | 42.5              | 44.5          | 0                  | 2.00               | 48.26          |
| IPR-26       | NM        | NM               | NM                | NM                | NM                | NM            | NM                 | NM                 | NM             |
| IPR-27       | 5/20/2011 | NM               | ND                | 22.65             | NM                | NM            | 0                  | 2.50               | NM             |
| IPR-28       | 5/20/2011 | NM               | ND                | 20.16             | NM                | NM            | 0                  | 0.20               | NM             |
| IPR-29       | 5/20/2011 | NM               | ND                | 18.51             | 48.90             | 49.7          | 0                  | 0.80               | NM             |
| IPR-30       | NM        | NM               | NM                | NM                | NM                | NM            | NM                 | NM                 | NM             |
| IPR-31       | NM        | NM               | NM                | NM                | NM                | NM            | NM                 | NM                 | NM             |
| OSMW-01      | 5/20/2011 | 71.12            | ND                | 23.51             | ND                | 42.2          | 0                  | 0.00               | 47.61          |
| OSMW-02      | 5/20/2011 | 71.12            | ND                | 23.47             | ND                | 45.2          | 0                  | 0.00               | 48.12          |
| OSMW-02      | 5/20/2011 | 71.39            | ND                | 23.47             | ND                | 44.7          | 0                  | 0.00               | 48.08          |
| O 01414 4-00 | 312012011 | 11.00            | IND               | 20.01             | שויו              | 77.7          | U                  | 0.00               | +0.00          |

#### Notes:

(1) Potentiometric heads in wells containing LNAPL are corrected using a specific gravity = 0.96

sheen Sheen = assumed thickness of 0.01 ft

NM not measured

LNAPL light non-aqueous phase liquid DNAPL dense non-aqueous phase liquid

TOR top of riser

amsl above mean sea level ND NAPL not detected

Table 3
NAPL Recovery for Second Quarter of 2011
Hempstead Intersection Street Former MGP Site

|                      | А                   | pril 15, 201 | 1       | M         | 1ay 2-3, 201 | 1       | N         | May 20, 201  | 1            | Ji                   | une 7-8, 201 | 11           | J         | une 23, 201 | 1       |
|----------------------|---------------------|--------------|---------|-----------|--------------|---------|-----------|--------------|--------------|----------------------|--------------|--------------|-----------|-------------|---------|
|                      | Thickness           | Thickness    | Volume  | Thickness | Thickness    | Volume  | Thickness | Thickness    | Volume       | Thickness            | Thickness    | Volume       | Thickness |             | Volume  |
| Well ID              | of LNAPL            | of DNAPL     | Removed | of LNAPL  | of DNAPL     | Removed | of LNAPL  | of DNAPL     | Removed      | of LNAPL             | of DNAPL     |              | of LNAPL  | of DNAPL    | Removed |
|                      | Ff(1)               | Ff(1)        | (1)     | F6/3      | F(1)         | (1)     | F6/3      | F6/3         | (1)          | F(c)                 | F6/3         | (1)          |           | 1112        | (1)     |
|                      | [ft]                | [ft]         | [gal]   | [ft]      | [ft]         | [gal]   | [ft]      | [ft]         | [gal]        | [ft]                 | [ft]         | [gal]        | [ft]      | [ft]        | [gal]   |
| HIMW-01S             | NI                  | NI           |         | ND        | ND           | 0.00    | NI        | NI           | 0.00         | ND                   | ND           | 0.00         | NI        |             | 0.00    |
| HIMW-01I             | ND                  | 1.30         | 0.20    | ND        | 1.50         | 0.26    | ND        | 0.30         | 0.05         |                      | ND           | 0.00         | NI        |             | 0.00    |
| HIMW-06S             | ND                  | 2.10         | 0.40    | ND        | 1.30         | 0.22    | ND        | 2.00         | 0.34         |                      | 2.00         | 0.34         | ND        | 2.50        | 0.43    |
| HIMW-06I<br>HIMW-07S | NI<br>ND            | NI<br>0.50   | 0.00    | ND<br>ND  | ND<br>0.01   | 0.00    | ND<br>ND  | 0.01<br>2.00 | 0.00<br>0.34 |                      | ND<br>1.00   | 0.00<br>0.17 | NI<br>ND  | 0.05        | 0.00    |
| HIMW-075             | NI<br>NI            | 0.50         | 0.01    | ND<br>ND  | ND           | 0.00    | NI<br>NI  | 2.00<br>NI   | 0.00         |                      | ND           | 0.17         | NI<br>NI  |             | 0.00    |
| HIMW-07D             | NI                  | NI<br>NI     | 0.00    | ND<br>ND  | ND<br>ND     | 0.00    | NI        | NI<br>NI     | 0.00         | ND<br>ND             | ND<br>ND     | 0.00         | NI<br>NI  |             | 0.00    |
| HIMW-11S             | NI<br>NI            | NI<br>NI     | 0.00    | NI<br>NI  | NI<br>NI     | 0.00    | NI        | NI<br>NI     | 0.00         | ND<br>ND             | ND<br>ND     | 0.00         | NI<br>NI  |             | 0.00    |
| HIMW-11I             | NI<br>NI            | NI<br>NI     | 0.00    | ND        | ND           | 0.00    | NI        | NI<br>NI     | 0.00         | NI<br>NI             | NI<br>NI     | 0.00         | NI<br>NI  |             | 0.00    |
| HIMW-16S             | NI                  | NI           | 0.00    | ND<br>ND  | 5.00         | 0.00    | NI        | NI           | 0.00         | NI                   | NI           | 0.00         | NI<br>NI  |             | 0.00    |
| HIMW-165             | NI<br>NI            | NI<br>NI     | 0.00    | ND<br>ND  | 5.00         | 0.85    | NI        | NI<br>NI     | 0.00         | NI                   | NI           | 0.00         | NI<br>NI  |             | 0.00    |
| HIMW-17S             | ND                  | 1.50         | 0.00    | ND<br>ND  | 1.20         | 0.85    | NI        | NI<br>NI     | 0.00         | ND                   | 1.50         | 0.00         | ND        |             | 0.00    |
| HIMW-18S             | NI                  | NI           | 0.23    | ND<br>ND  | 0.01         | 0.20    | NI        | NI           | 0.00         | ND<br>ND             | 0.01         | 0.20         | NI<br>NI  |             | 0.14    |
| HIMW-18I             | NI                  | NI           | 0.00    | ND        | ND           | 0.00    | NI        | NI           | 0.00         | ND<br>ND             | ND           | 0.00         | NI        |             | 0.00    |
| HIMW-19S             | NI                  | NI           | 0.00    | ND        | ND<br>ND     | 0.00    | NI        | NI           | 0.00         |                      | ND<br>ND     | 0.00         | NI        |             | 0.00    |
| HIMW-19I             | NI                  | NI           | 0.00    | ND        | ND           | 0.00    | NI        | NI           | 0.00         | ND<br>ND             | ND<br>ND     | 0.00         | NI        |             | 0.00    |
| HIMW-21              | NI<br>NI            | NI           | 0.00    | NI        | NI           | 0.00    | NI<br>NI  | NI<br>NI     | 0.00         | ND                   | 1.00         | 1.50         | ND.       |             | 0.60    |
| PZ-08                | ND.                 | 0.01         | 0.00    | ND        | 0.01         | 0.00    | ND.       | 0.90         | 0.00         |                      | 1.00         | 0.17         | ND        | ND          | 0.00    |
| IPR-02               | ND                  | 0.90         | 1.35    | ND        | 1.00         | 1.50    | ND        | 0.70         | 1.05         |                      | ND           | 0.00         | ND        |             | 0.45    |
| IPR-03               | NI                  | NI           | 0.00    | ND        | ND           | 0.00    | NI        | NI           | 0.00         | ND                   | ND           | 0.00         | NI<br>NI  |             | 0.00    |
| IPR-05               | NI                  | NI           | 0.00    | NI        | NI           | 0.00    | NI        | NI<br>NI     | 0.00         |                      | NI           | 0.00         | NI<br>NI  |             | 0.00    |
| IPR-06               | ND                  | 1.20         | 1.50    | ND        | 1.00         | 1.50    | ND        | 0.90         | 1.35         | ND                   | 1.50         | 2.25         | ND        | 0.30        | 0.45    |
| IPR-09               | ND                  | 0.90         | 1.35    | ND        | 1.20         | 0.00    | NI        | NI           | 0.00         | ND                   | ND           | 0.00         | NI        | NI          | 0.00    |
| IPR-12A              | NI                  | NI           | 0.00    | ND        | ND           | 0.00    | NI        | NI           | 0.00         | ND                   | ND           | 0.00         | NI        | NI          | 0.00    |
| IPR-14               | NI                  | NI           | 0.00    | ND        | ND           | 0.00    | NI        | NI           | 0.00         | ND                   | ND           | 0.00         | NI        | NI          | 0.00    |
| IPR-15               | NI                  | NI           | 0.00    | ND        | ND           | 0.00    | NI        | NI           | 0.00         | ND                   | ND           | 0.00         | NI        | NI          | 0.00    |
| IPR-16               | ND                  | 1.20         | 1.70    | ND        | 0.01         | 0.00    | NI        | NI           | 0.00         | ND                   | 1.00         | 1.50         | ND        | ND          | 0.00    |
| IPR-17               | ND                  | 1.30         | 1.80    | ND        | 1.50         | 0.00    | ND        | 0.60         | 0.25         | ND                   | ND           | 0.00         | ND        | ND          | 0.00    |
| IPR-18               | NI                  | NI           | 0.00    | ND        | ND           | 0.00    | NI        | NI           | 0.00         | ND                   | ND           | 0.00         | NI        | NI          | 0.00    |
| IPR-19D              | NI                  | NI           | 0.00    | ND        | ND           | 0.00    | NI        | NI           | 0.00         | ND                   | ND           | 0.00         | NI        | NI          | 0.00    |
| IPR-20               | ND                  | 0.01         | 0.00    | ND        | 0.01         | 0.00    | NI        | NI           | 0.00         | ND                   | 0.60         | 0.00         | NI        | NI          | 0.00    |
| IPR-21               | ND                  | 2.00         | 3.00    | ND        | 3.10         | 3.00    | ND        | 0.80         | 0.50         | ND                   | 3.00         | 4.50         | ND        |             | 3.60    |
| IPR-22               | NI                  | NI           | 0.00    | ND        | 0.90         | 0.00    | ND        | 1.50         | 2.00         | ND                   | 0.80         | 1.20         | ND        |             | 1.50    |
| IPR-23               | NI                  | NI           | 0.00    | ND        | ND           | 0.00    | NI        | NI           | 0.00         |                      | ND           | 0.00         | NI        |             | 0.00    |
| IPR-24               | NI                  | NI           | 0.00    | ND        | 0.01         | 0.00    | NI        | NI           | 0.00         | ND                   | 1.00         | 1.50         | NI        |             | 0.00    |
| IPR-25               | ND                  | 2.20         | 0.00    | NI        | NI           | 0.00    | ND        | 2.00         | 3.00         |                      | 2.00         | 3.00         | ND        |             | 0.00    |
| IPR-26               | ND                  | 1.00         | 1.50    | ND        | 0.80         | 1.20    | NI        | NI           | 0.00         |                      | NI           | 0.00         | NI        |             | 0.00    |
| IPR-27               | ND                  | 1.50         | 0.50    | ND        | 1.50         | 0.00    | ND        | 2.50         | 0.50         |                      | 2.00         | 0.00         | ND        |             | 1.95    |
| IPR-28               | NI                  | NI           | 0.00    | ND        | 0.50         | 0.00    | ND        | 0.20         | 0.30         | ND                   | ND           | 0.00         | ND        | 0.30        | 0.45    |
| IPR-29               | ND                  | 1.20         | 1.80    | ND        | 0.20         | 0.00    | ND        | 0.80         | 0.00         |                      | 1.00         | 1.50         | ND        |             | 0.60    |
| IPR-30               |                     |              | 0.00    | ND        | ND 2.00 2.00 |         | NI NI 0.0 |              |              | 0.00 ND 0.40 0.00    |              |              | NI        | 0.00        |         |
|                      | Volume Removed 15.3 |              |         | Volume Re | moved        | 11.58   | Volume Re | moved        | 9.83         | Volume Removed 17.89 |              |              | Volume Re | 10.17       |         |

Total volume recovered during the second quarter 2011: Total volume of NAPL recovered since April 2007:

64.83 gal 721.7 gal Well temporarily inaccessible at time of monitoring event.

#### Notes:

NI - well not included in the product recovery event

ND - non-detect

LNAPL - light non-aqueous phase liquid DNAPL - dense non-aqueous phase liquid

(1) - Volume of product recovered estimated by multiplying the cross sectional area of well screen by the thickness of product layer measured prior to pumping. All IPR monitoring wells (unless noted) and HIMW-21are 6-inch diameter: Monitoring wells IPR-16 and IPR-17 are 5.75-inch diameter: All HIMW (unless noted) and PZ monitoring wells are 2-inch diameter: Monitoring well IPR-05 and IPR-12A are 1-inch diameter:

Vol = 1.469 Vol = 1.349 Vol = 0.163 Vol = 0.041

### Table 4

# Dissolved-Phase Concentrations of Total BTEX and Total PAH Compounds for the Second Quarter of 2011

#### **Hempstead Intersection Street Former MGP Site**

|                        |            | uarter 2011 |
|------------------------|------------|-------------|
| Well ID                | May 23- Ju | ine 3, 2011 |
| Weii 15                | BTEX       | PAH         |
|                        | [ug/L]     | [ug/L]      |
| HIMW-001D              |            |             |
| HIMW-001I              |            |             |
| HIMW-001S<br>HIMW-002D |            |             |
| HIMW-002D              |            |             |
| HIMW-002S              |            |             |
| HIMW-003D              | ND         | ND          |
| HIMW-003I              | ND         | ND          |
| HIMW-003S              | ND         | ND          |
| HIMW-004D<br>HIMW-004I |            |             |
| HIMW-004S              |            |             |
| HIMW-005D              | 133        | 166         |
| HIMW-005I              | 146        | 2,120       |
| HIMW-005S              | ND         | ND ND       |
| HIMW-006D              |            |             |
| HIMW-006I              |            |             |
| HIMW-006S<br>HIMW-007D |            |             |
| HIMW-007I              |            |             |
| HIMW-007S              |            |             |
| HIMW-008D              | ND         | ND          |
| HIMW-008I              | ND         | ND          |
| HIMW-008S              | ND         | 3           |
| HIMW-009D              |            |             |
| HIMW-009I<br>HIMW-009S |            |             |
| HIMW-010D              |            |             |
| HIMW-010I              |            |             |
| HIMW-010S              |            |             |
| HIMW-011D              |            |             |
| HIMW-011I              |            |             |
| HIMW-011S<br>HIMW-012D | ND         | ND          |
| HIMW-012I              | 64         | 108         |
| HIMW-012S              | ND         | ND          |
| HIMW-013D              | 2          | 17          |
| HIMW-013I              | 142        | 67          |
| HIMW-013S              | ND<br>NB   | ND<br>NB    |
| HIMW-014D              | ND         | ND          |
| HIMW-014I<br>HIMW-015D | 29<br>ND   | 42<br>ND    |
| HIMW-015I              | 23         | 31          |
| HIMW-016I              |            |             |
| HIMW-016S              |            |             |
| HIMW-017S              |            |             |
| HIMW-018I              |            |             |
| HIMW-018S<br>HIMW-019I |            |             |
| HIMW-019S              |            |             |
| HIMW-020I              | 198        | 530         |
| HIMW-020S              | ND         | ND          |
| HIMW-022               | ND         | ND          |
| HIMW-023               | 43         | 11          |
| HIMW-024               | 870        | 1,020       |
| HIMW-025<br>PZ-02      | 552        | 573         |
| PZ-02<br>PZ-03         |            |             |
| PZ-08                  |            |             |
| . = 00                 |            |             |

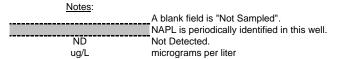
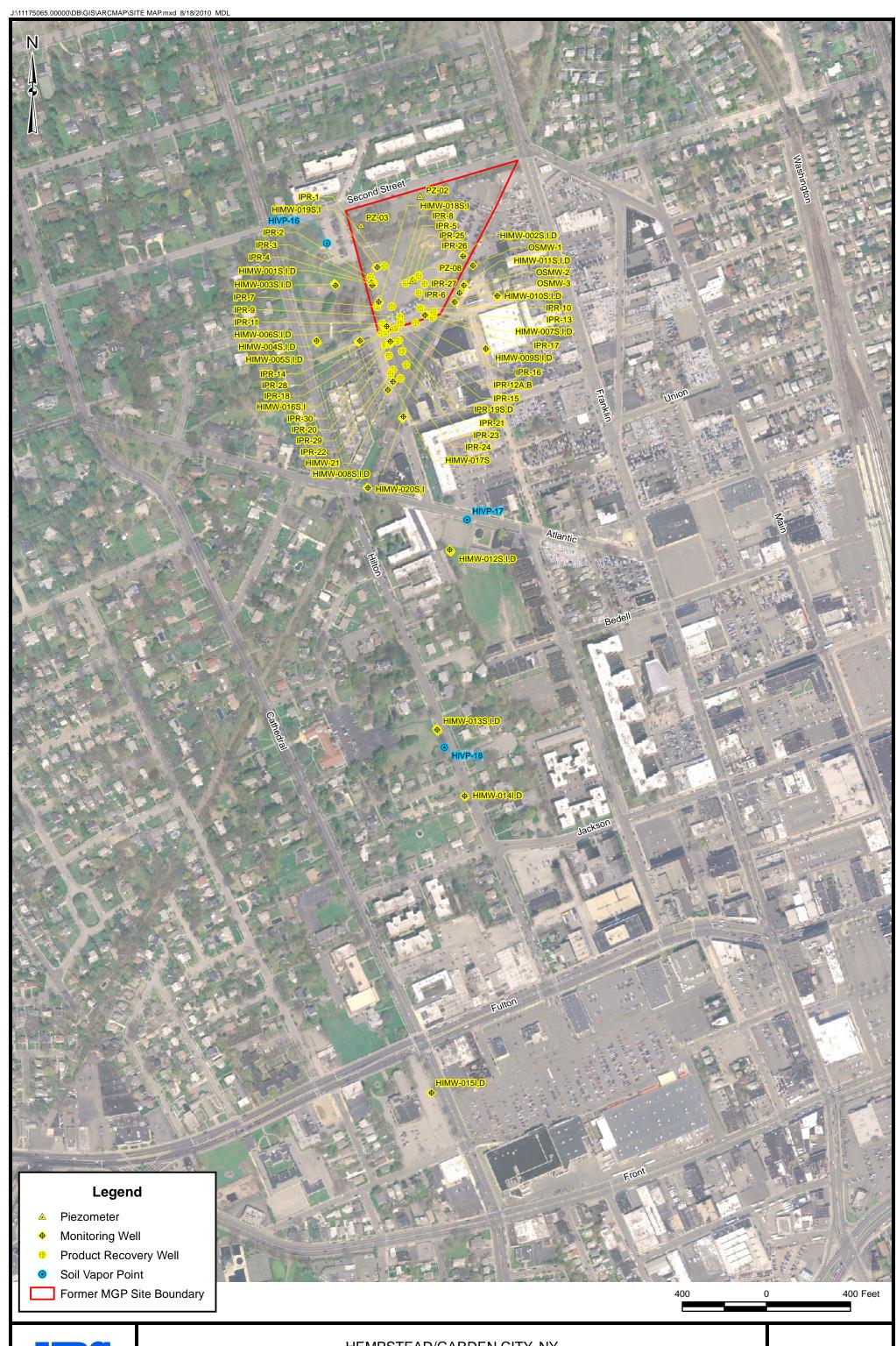
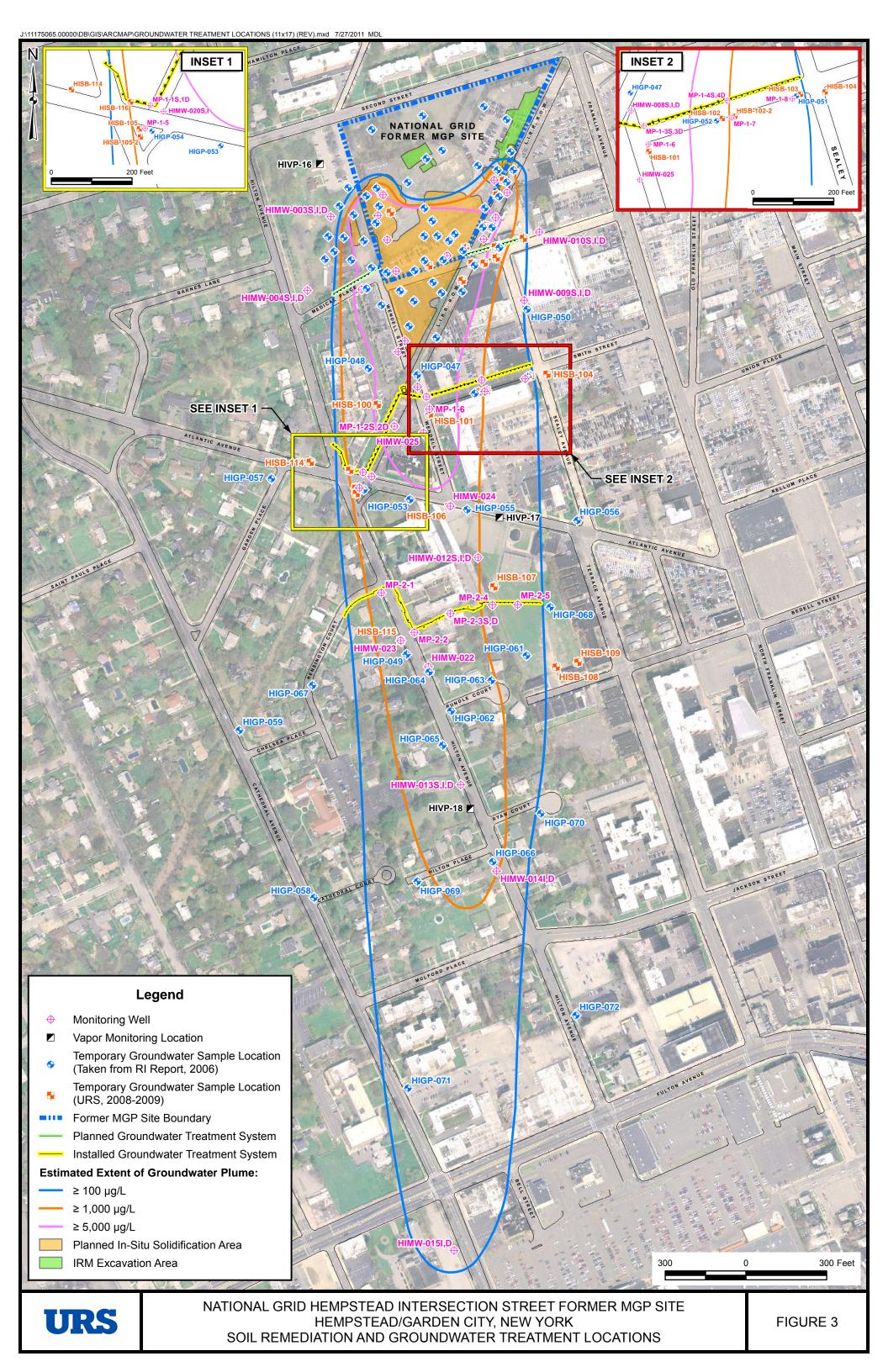
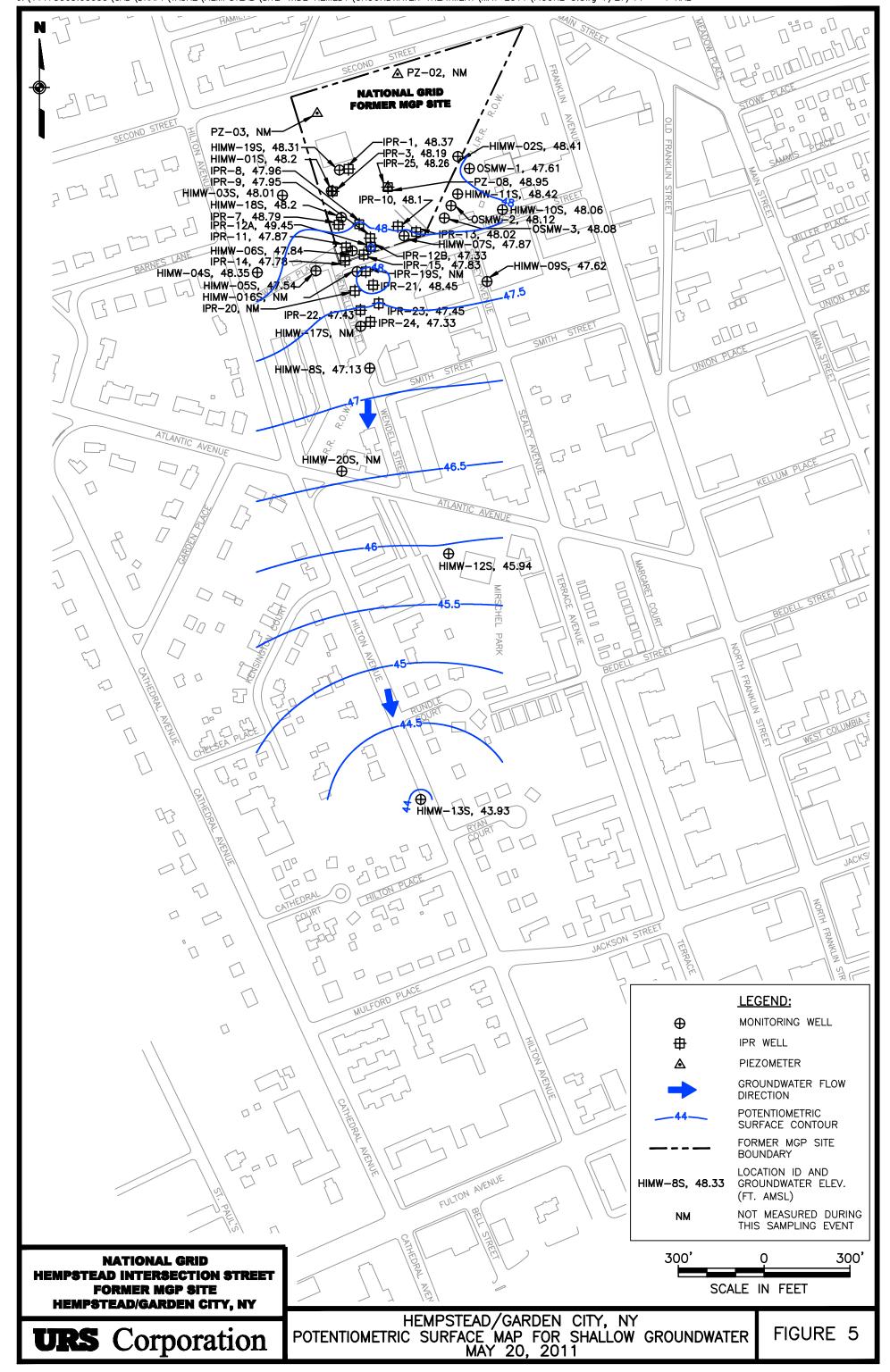


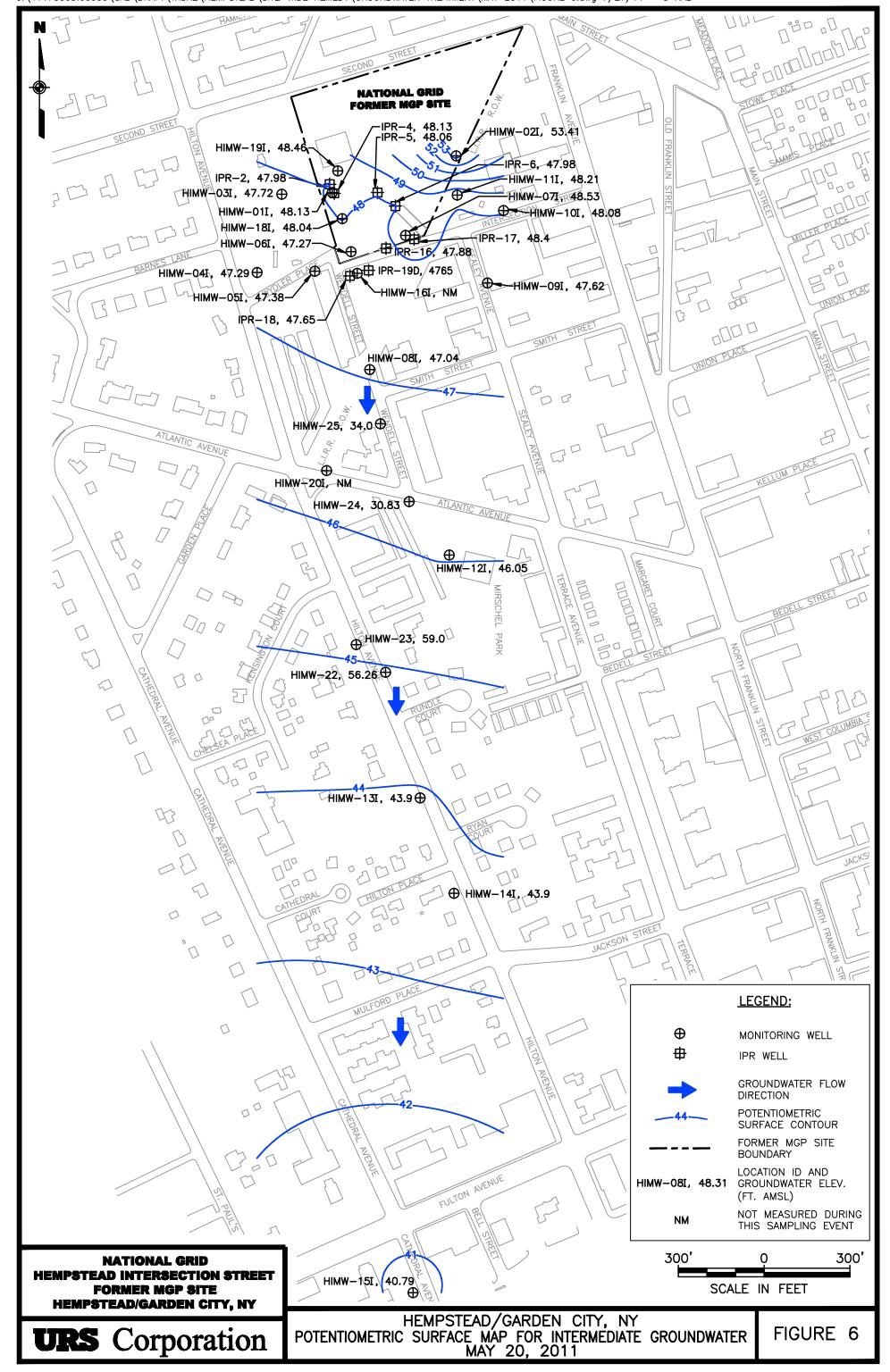

Table 5 **Groundwater Treatment Performance Monitoring** Second Quarter 2011 Hempstead Intersection Street Former MGP Site

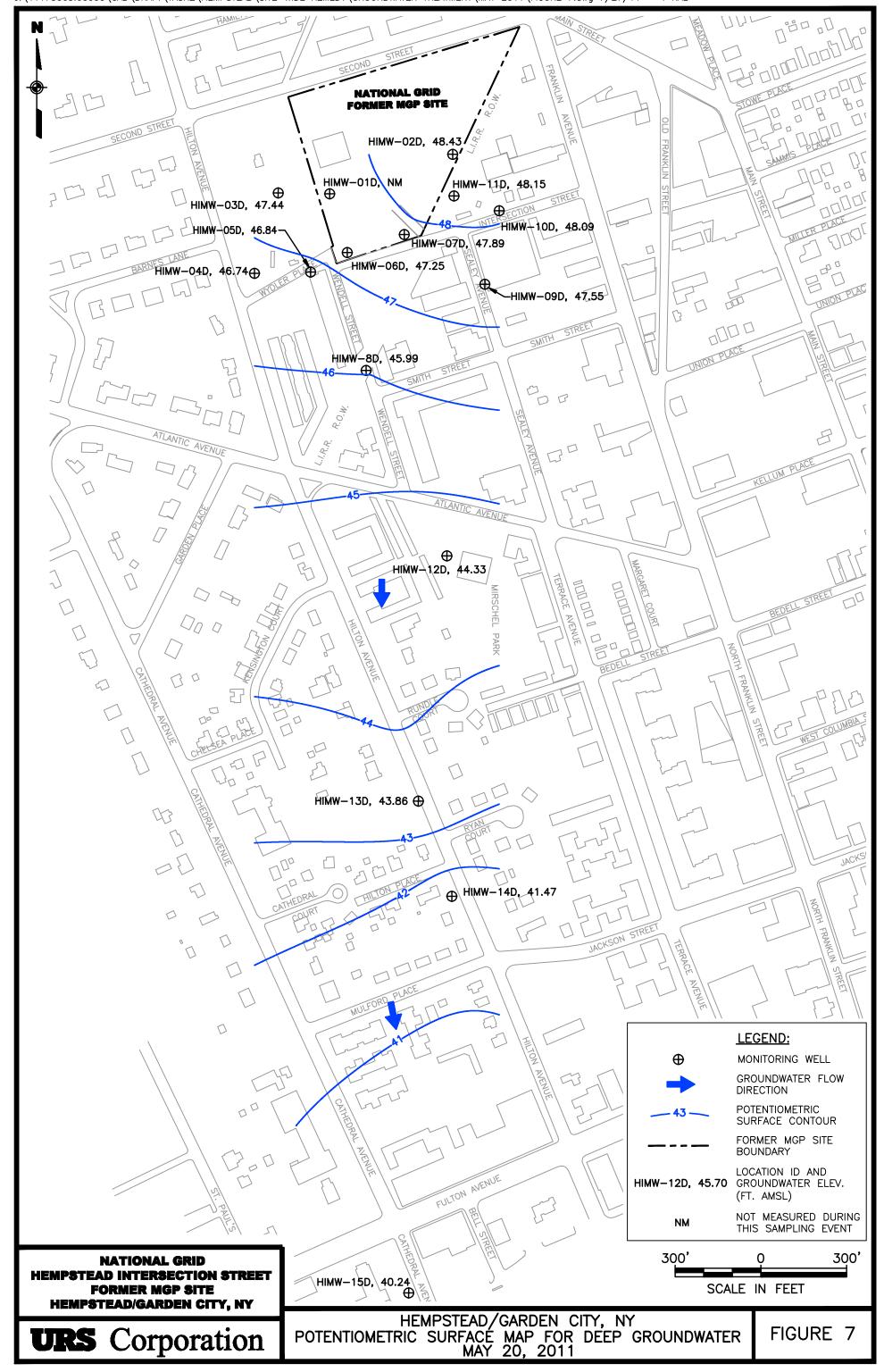
|    |         |          | 5/20/2011 |           |          | 5/27/2011 |           | 6/23/2011 |           |           |  |  |
|----|---------|----------|-----------|-----------|----------|-----------|-----------|-----------|-----------|-----------|--|--|
|    | ID      | DTW (ft) | DO (mg/L  | PID (ppm) | DTW (ft) | DO (mg/L) | PID (ppm) | DTW (ft)  | DO (mg/L) | PID (ppm) |  |  |
| S  | MP-1-1S | 25.29    | 34.87     | 0.0       | 25.10    | 17.23     | 0.0       | 25.49     | 8.51      | 3.0       |  |  |
| У  | MP-1-1D | 25.17    | 33.32     | 0.0       | 24.97    | 26.39     | 0.0       | 25.27     | 9.39      | 1.6       |  |  |
| s  | MP-1-2S | 19.71    | 29.27     | 0.0       | 19.72    | 13.41     | 0.0       | 19.97     | 12.03     | 5.4       |  |  |
| t  | MP-1-2D | 19.44    | 47.14     | 0.0       | 19.39    | 25.24     | 0.0       | 19.72     | 21.97     | 2.8       |  |  |
| е  | MP-1-3S | 17.46    | 7.74      | 0.0       | 17.50    | 7.68      | 0.0       | 17.78     | 21.14     | 3.3       |  |  |
| m  | MP-1-3D | 17.47    | 4.61      | 0.0       | 17.48    | 9.04      | 0.0       | 17.77     | 47.52     | 8.5       |  |  |
|    | MP-1-4S | 19.94    | 7.02      | 0.0       | 20.01    | 6.12      | 0.0       | 20.29     | 7.16      | 279.7     |  |  |
| ., | MP-1-4D | 20.12    | 39.79     | 0.0       | 20.04    | 48.14     | 0.0       | 20.46     | 20.36     | 54.5      |  |  |
| #  | MP-1-5  | NA       | NA        | NA        | NA       | NA        | NA        | 25.03     | 10.39     | 104.2     |  |  |
| 1  | MP-1-6  | 17.20    | 20.87     | 0.0       | 19.25    | 9.48      | 0.0       | 17.53     | 9.20      | 41.2      |  |  |
|    | MP-1-7  | 20.50    | 0.61      | 0.0       | 20.49    | 1.65      | 0.0       | 20.85     | 1.07      | 7.2       |  |  |
|    | MP-1-8  | 21.47    | 2.67      | 0.0       | 21.53    | 5.21      | 0.0       | 21.82     | 21.06     | 11.4      |  |  |

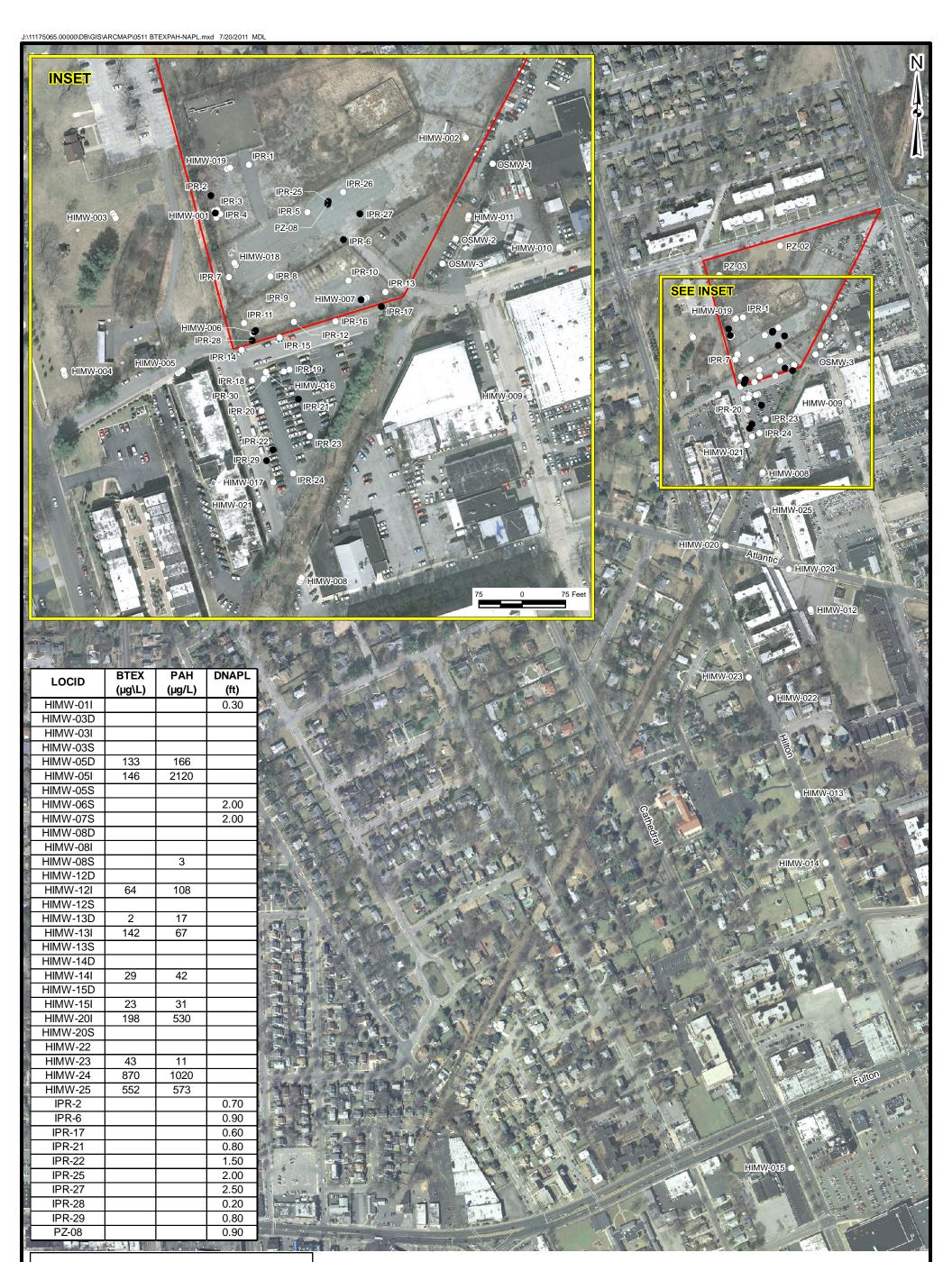

| S |         |           |          |           |           |           |           |          |           |           |           |           |           |          |           |           |          |           |           |
|---|---------|-----------|----------|-----------|-----------|-----------|-----------|----------|-----------|-----------|-----------|-----------|-----------|----------|-----------|-----------|----------|-----------|-----------|
| у |         | 4/12/2011 |          |           | 4/28/2011 |           |           |          | 5/13/2011 |           | 5/26/2011 |           | 6/10/2011 |          |           | 6/24/2011 |          |           |           |
| s | ID      | DTW (ft)  | DO (mg/L | PID (ppm) | DTW (ft)  | DO (mg/L) | PID (ppm) | DTW (ft) | DO (mg/L) | PID (ppm) | DTW (ft)  | DO (mg/L) | PID (ppm) | DTW (ft) | DO (mg/L) | PID (ppm) | DTW (ft) | DO (mg/L) | PID (ppm) |
| t | MP-2-1  | 29.07     | 15.62    | 0.0       | 28.55     | 13.80     | 0.0       | 28.44    | 25.49     | 0.0       | 28.20     | 14.20     | 0.0       | 28.43    | 12.51     | 38.7      | 28.54    | 15.18     | 214.4     |
| е | MP-2-2  | 30.15     | 27.80    | 0.0       | 29.61     | 33.39     | 0.1       | 29.52    | 32.89     | 0.0       | 29.26     | 31.75     | 0.0       | 29.48    | 7.21      | 0.0       | 29.61    | 21.12     | 0.0       |
| m | MP-2-3S | 30.28     | 48.68    | 0.1       | 29.71     | 39.41     | 0.1       | 29.62    | 49.12     | 0.0       | 29.35     | 43.64     | 0.0       | 29.60    | 8.68      | 0.0       | 29.71    | 12.13     | 7.1       |
|   | MP-2-3D | 30.52     | 49.10    | 0.1       | 29.93     | 39.52     | 0.0       | 29.86    | 49.21     | 0.0       | 29.61     | 44.41     | 0.0       | 29.83    | 11.91     | 0.0       | 29.97    | 15.79     | 10.2      |
| # | MP-2-4  | 19.08     | 36.90    | 0.0       | 18.46     | 32.39     | 0.0       | 18.40    | 39.73     | 0.0       | 18.13     | 45.41     | 0.0       | 18.35    | 11.05     | 1.4       | 18.47    | 9.41      | 149.4     |
| 2 | MP-2-5  | 17.27     | 18.37    | 0.0       | 16.63     | 5.23      | 0.0       | 16.63    | 14.35     | 0.0       | 16.31     | 10.32     | 0.0       | 16.58    | 8.46      | 73.8      | 16.70    | 11.20     | 157.1     |


DTW: Depth to water (feet)
DO: Dissolved Oxygen concentration (percent or milligrams per liter)
PID: Photoionization Detector measurement of well headspace (parts per million)


NA: Not Accessible


# **FIGURES**


Æ J:\11175065.00000\CAD\DRAFT\TASK2\HEMPSTEAD\GROUNDWATER MONITORING\FIGURE-1.dwg 3/13/09









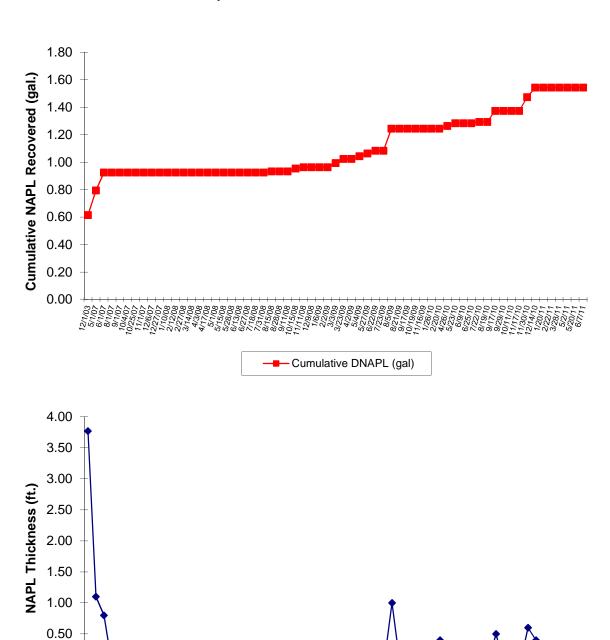





# Legend

- Monitoring Well Product Detected
- Monitoring Well Product Not Detected

Former MGP Site Boundary


Notes:

BTEX - Benzene, Toluene, Ethylbenzene, and Xylenes
PAH - Polynuclear Aromatic Hydrocarbons DNAPL - Dense Non-Aqueous Phase Liquid LNAPL - Light Non-Aqueous Phase Liquid µg/L - Micrograms per Liter ft - Feet of Product Thickness



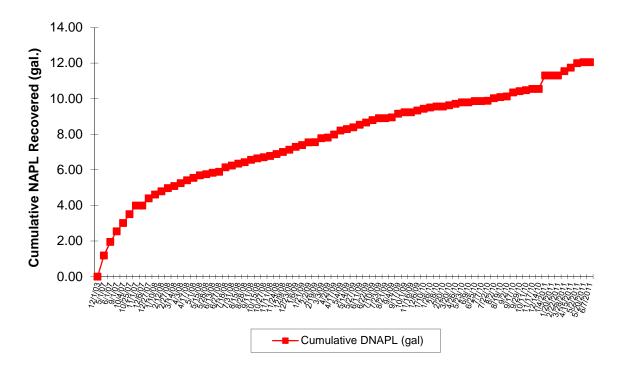



FIGURE 9A
Well HIMW-01S NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site



0.00

FIGURE 9B
Well HIMW-01I NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site



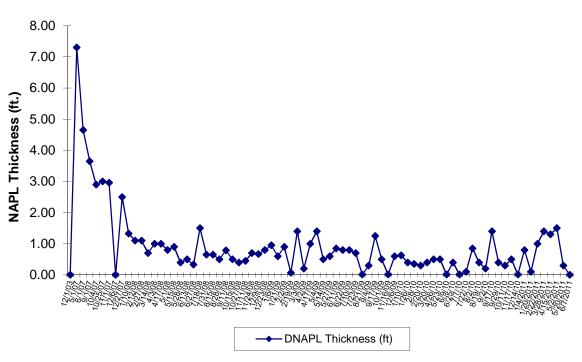
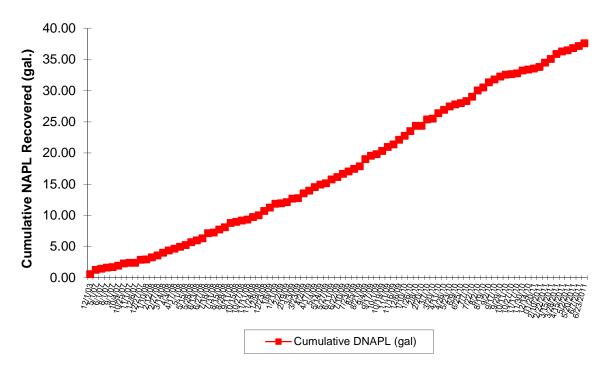




FIGURE 9C
Well HIMW-06S NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site



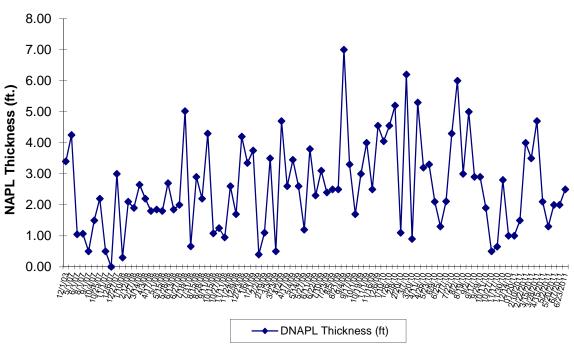
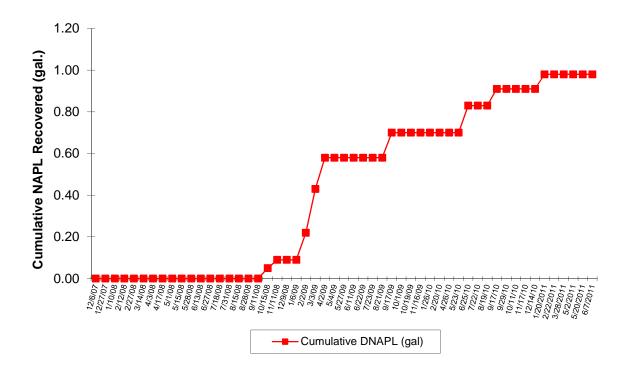




FIGURE 9D
Well HIMW-06I NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site



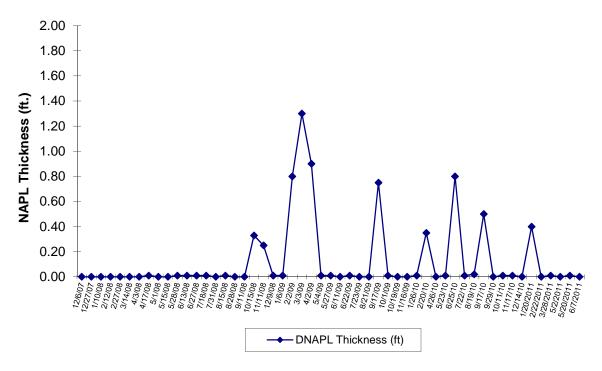




FIGURE 9E
Well HIMW-07S NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site



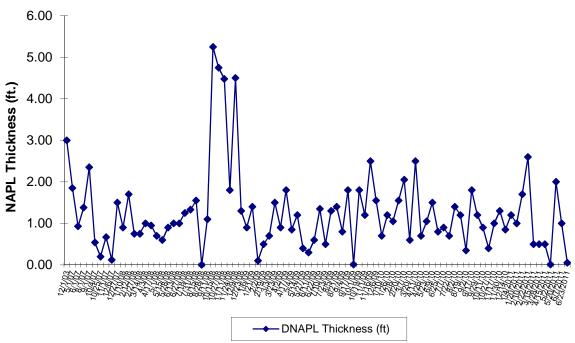



FIGURE 9F
Well HIMW-11S NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site

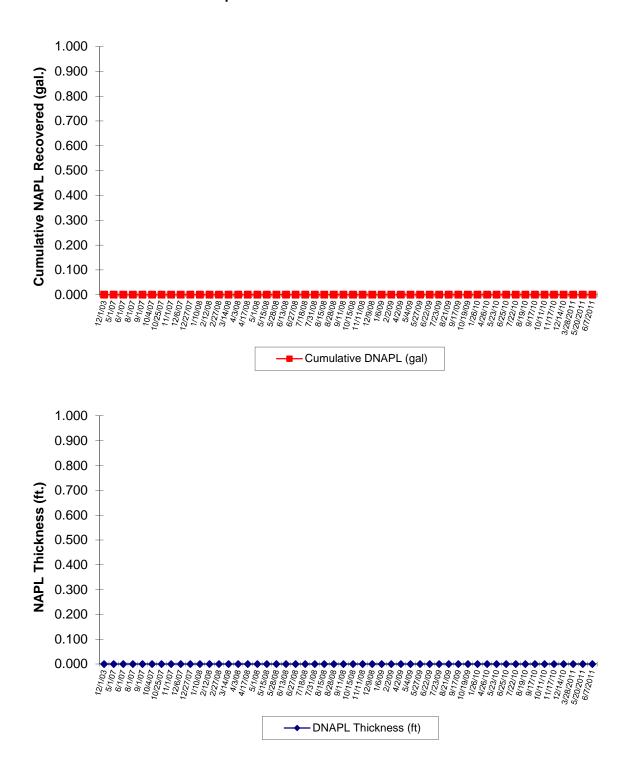
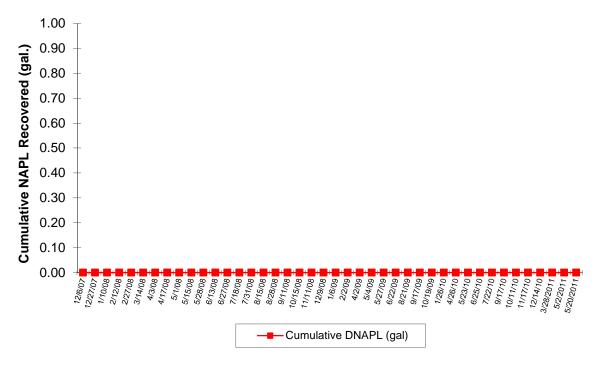




FIGURE 9G
Well HIMW-11I NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site



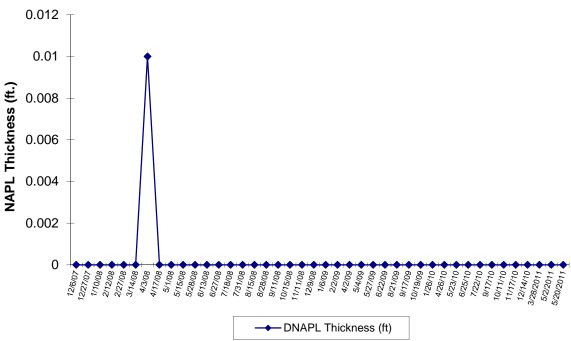
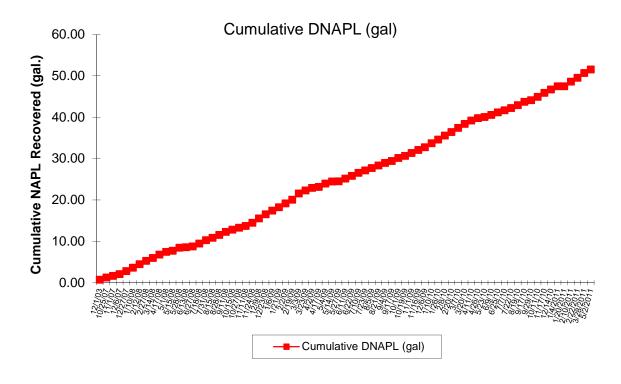
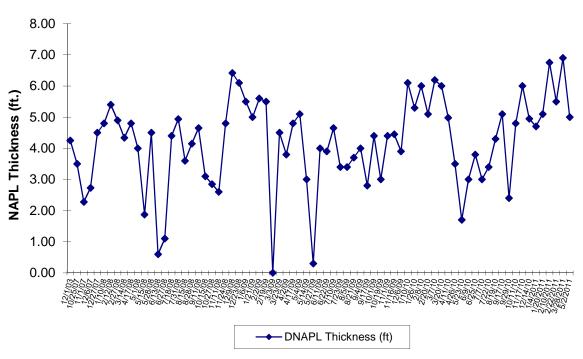
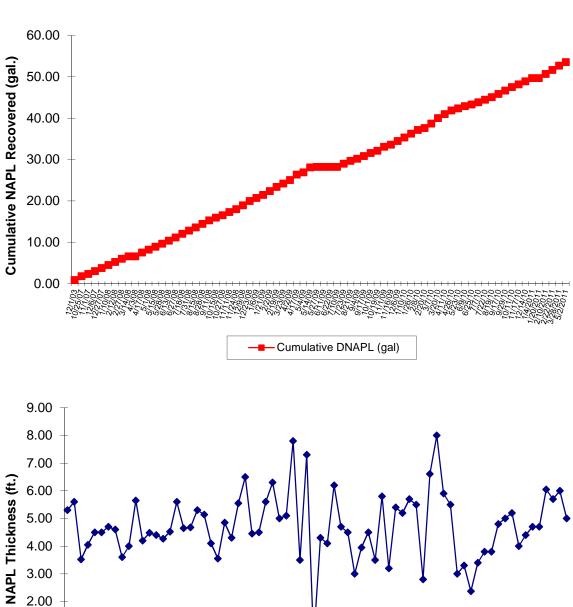
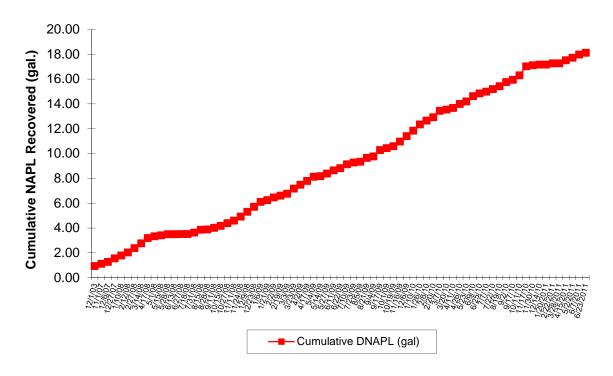




FIGURE 9H
Well HIMW-16S NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site





FIGURE 9I
Well HIMW-16I NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site



1.00

0.00

FIGURE 9J
Well HIMW-17S NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site



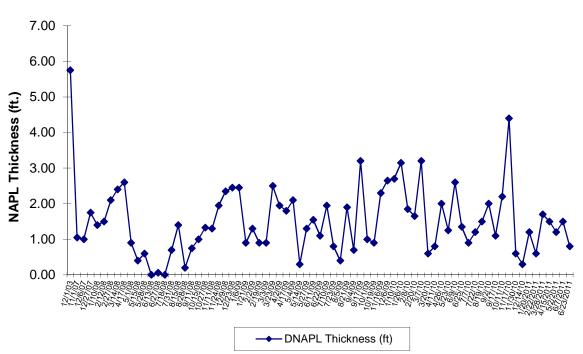
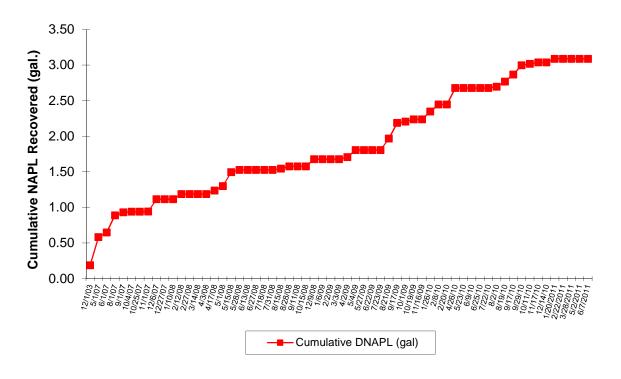




FIGURE 9K
Well HIMW-18S NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site



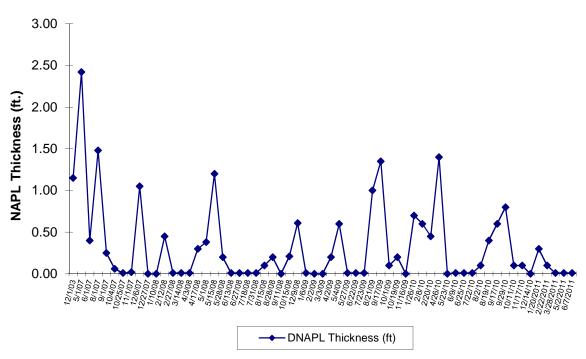



FIGURE 9L
Well HIMW-18I NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site



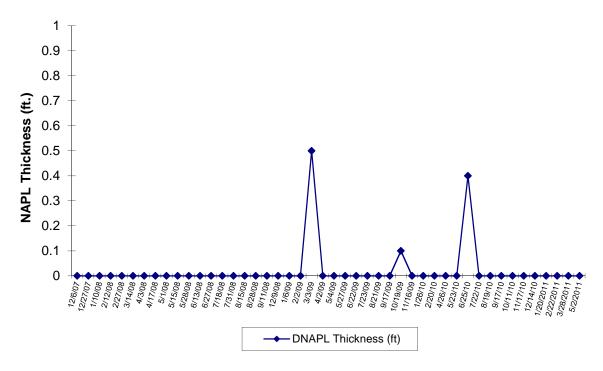
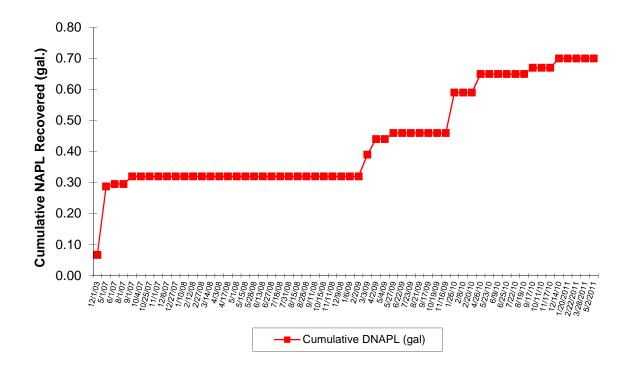




FIGURE 9M
Well HIMW-19S NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site



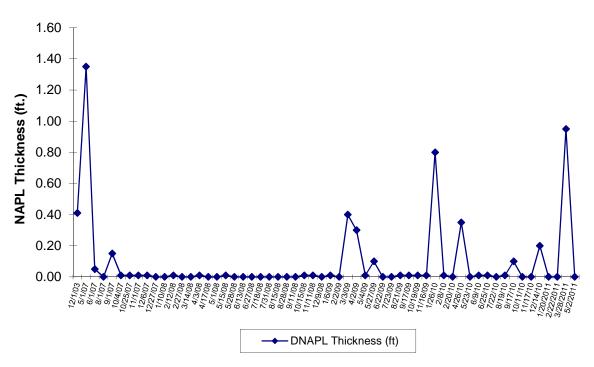
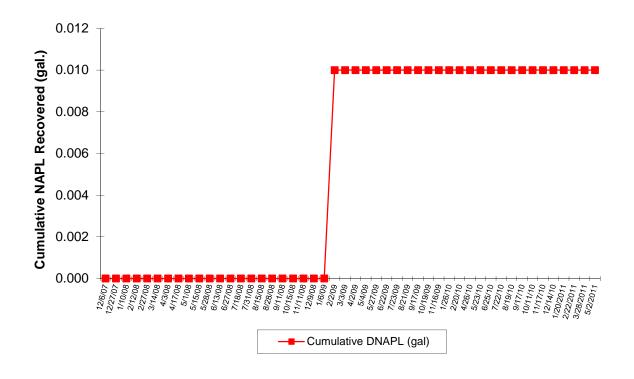




FIGURE 9N
Well HIMW-19I NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site



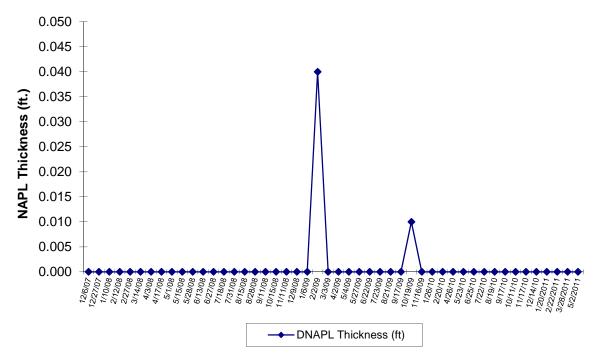
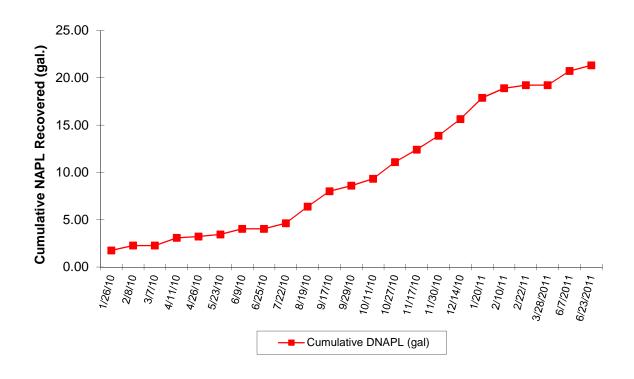




FIGURE 90
Well HIMW-21 NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site



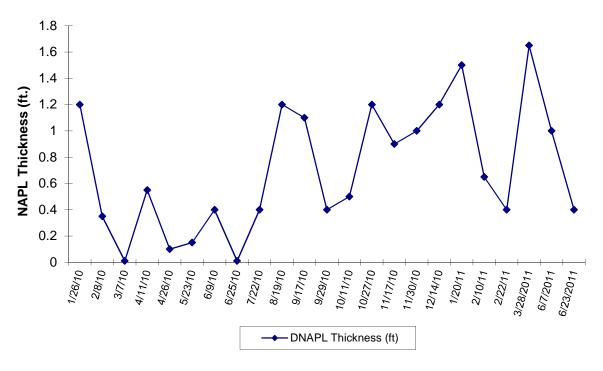



FIGURE 9P
Well PZ-08 NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site

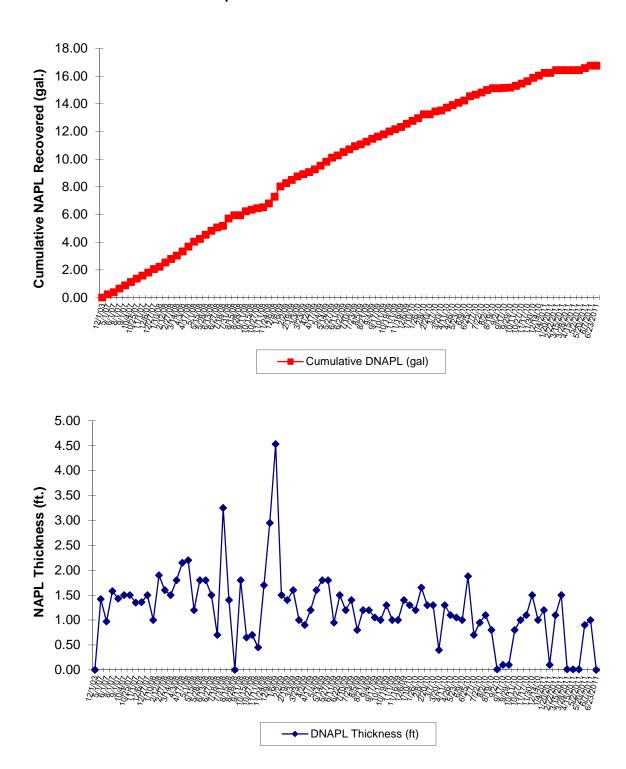



FIGURE 9Q
Well IPR-02 NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site

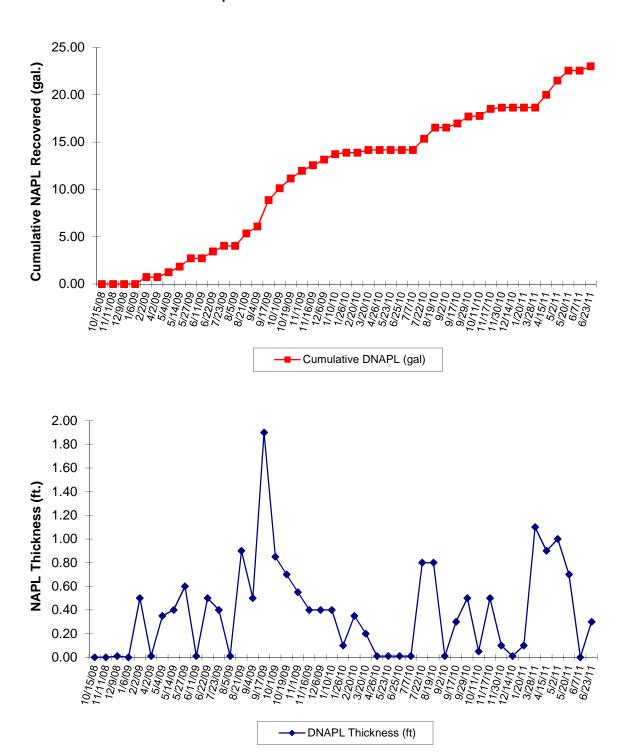
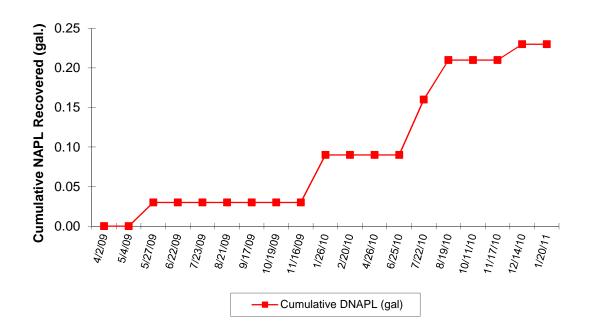




FIGURE 9R
Well IPR-05 NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site



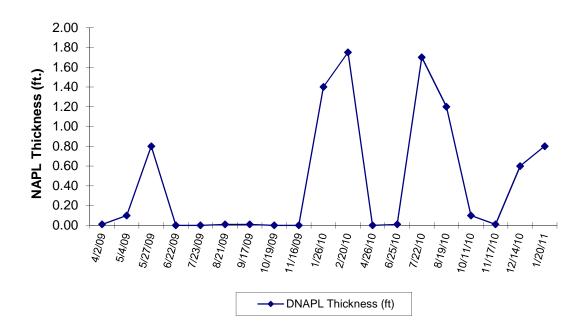
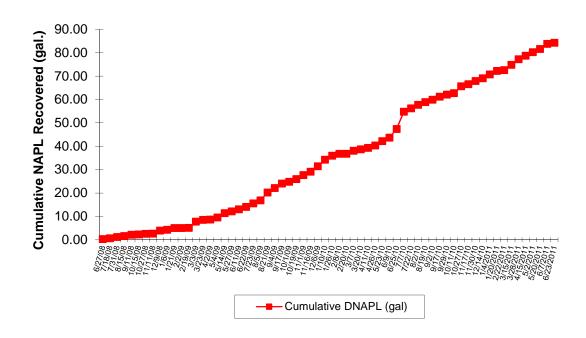




FIGURE 9S
Well IPR-06 NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site



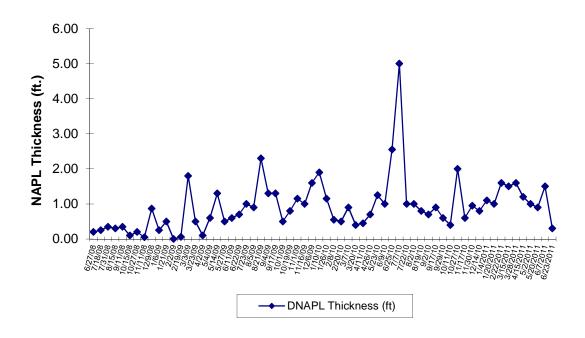
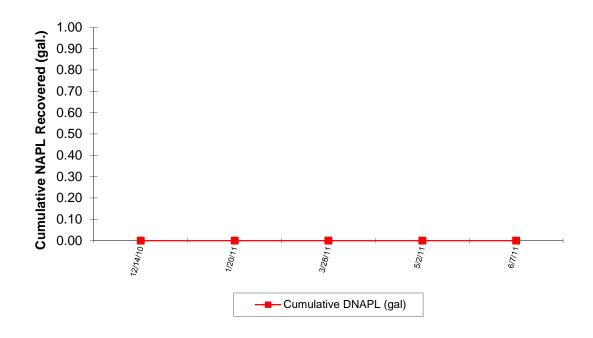




FIGURE 9T
Well IPR-07 NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site



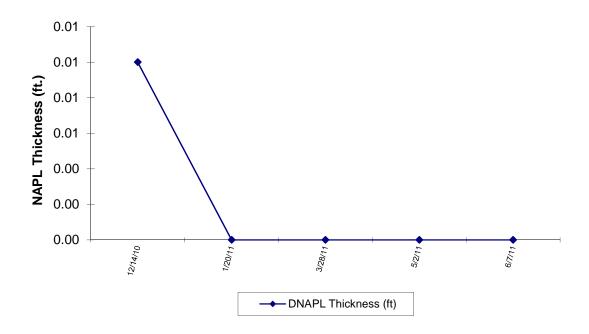
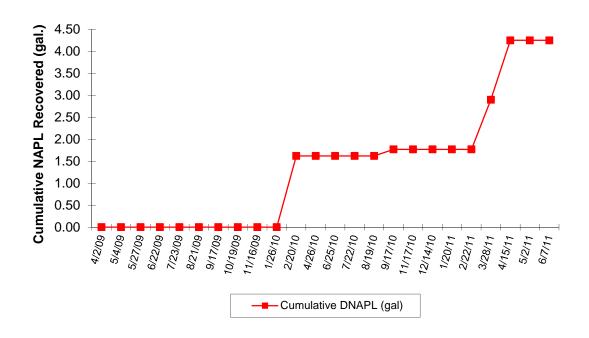




FIGURE 9U
Well IPR-09 NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site



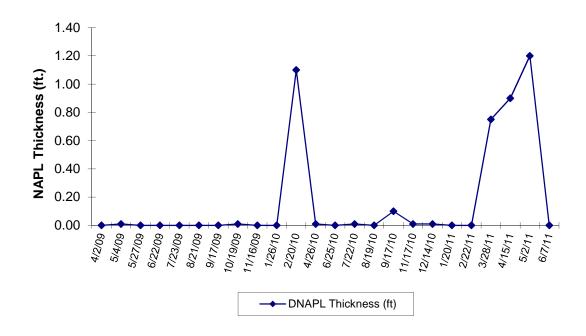
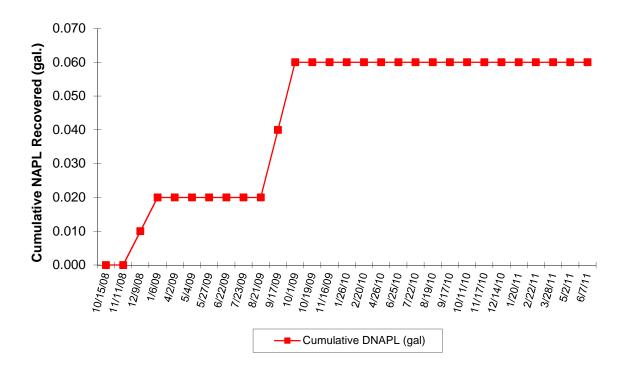




FIGURE 9V
Well IPR-12A NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site



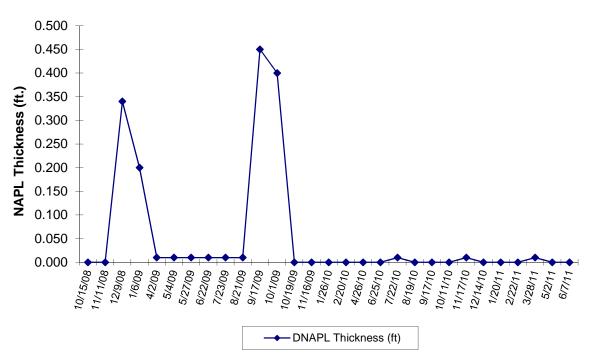
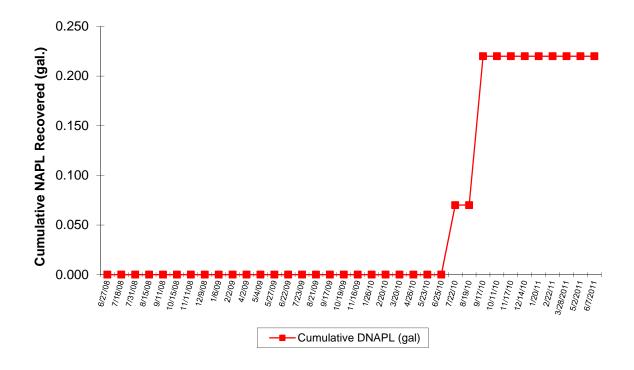




FIGURE 9W
Well IPR-15 NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site



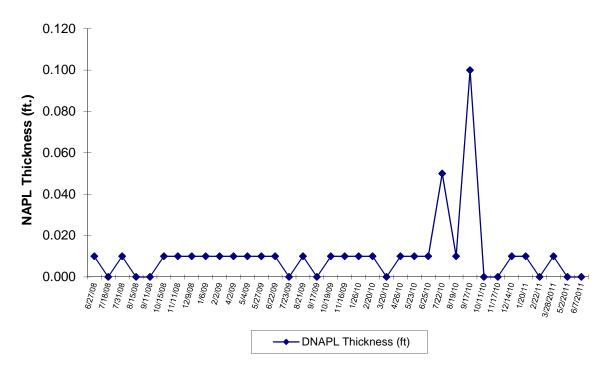
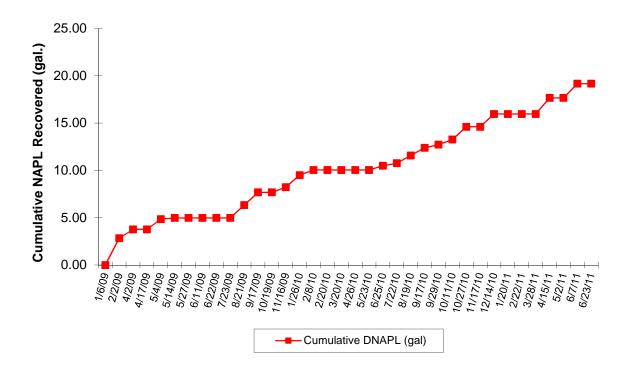




FIGURE 9X
Well IPR-16 NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site



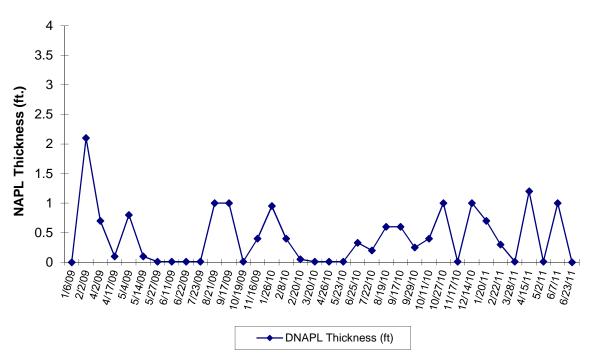
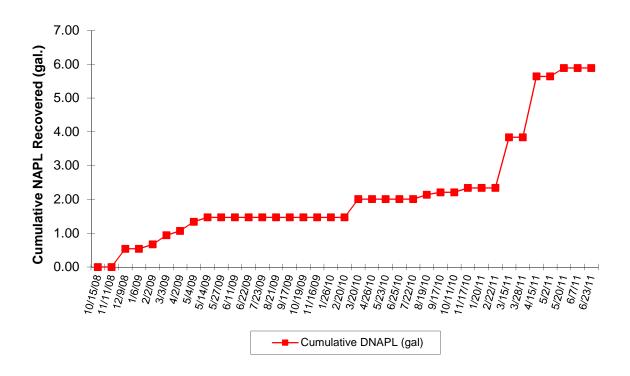




FIGURE 9Y
Well IPR-17 NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site



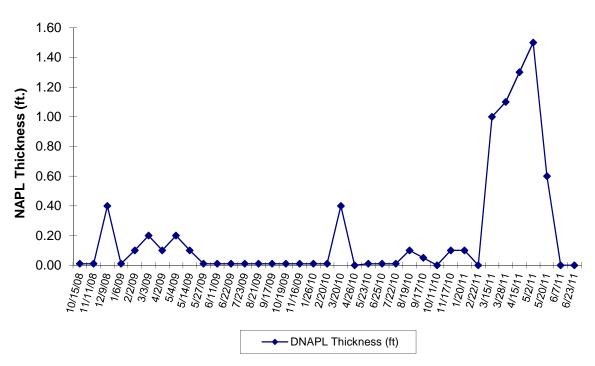
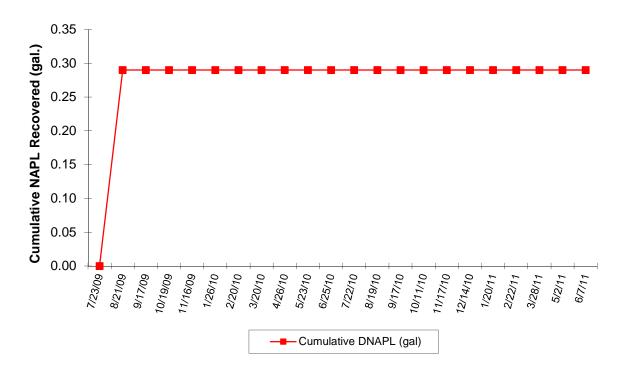




FIGURE 9Z
Well IPR-18 NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site



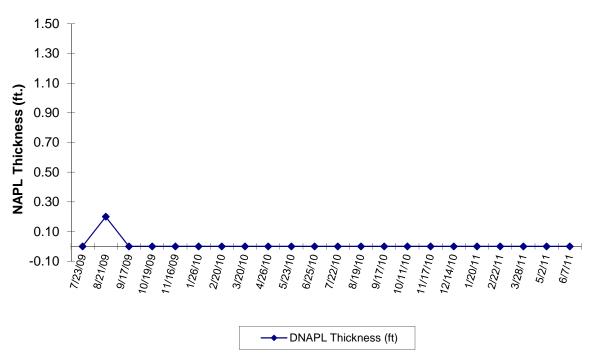
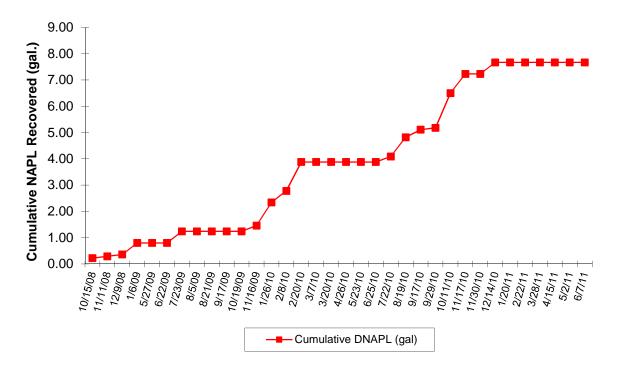




FIGURE 9AA
Well IPR-20 NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site



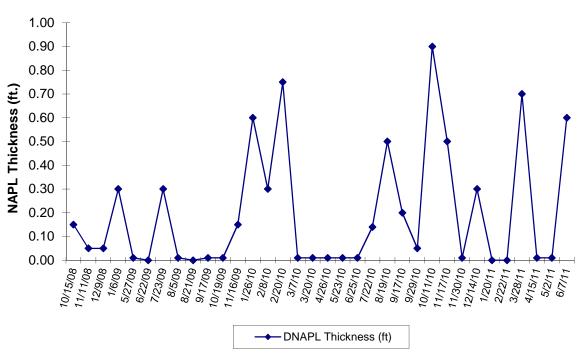
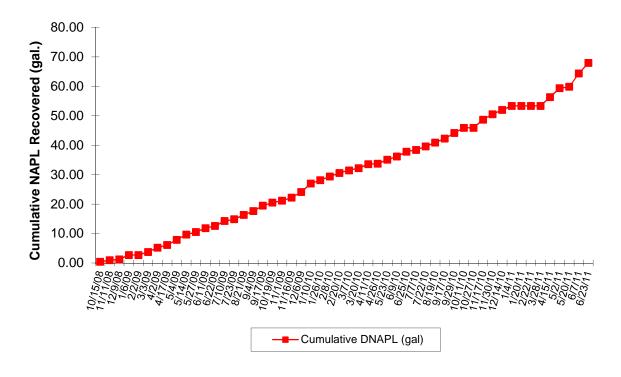




FIGURE 9AB
Well IPR-21 NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site



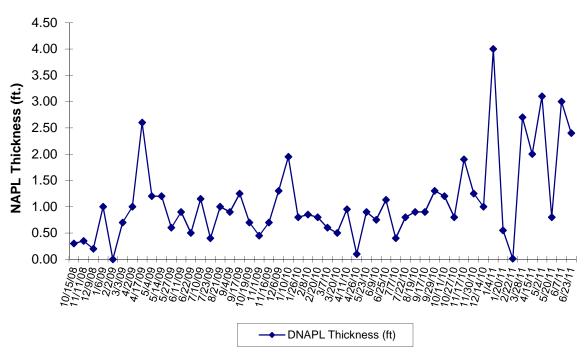
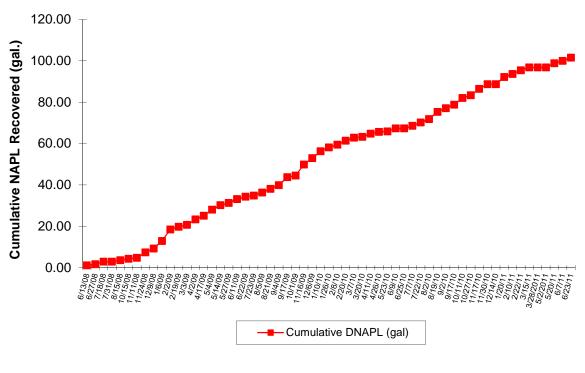




FIGURE 9AC
Well IPR-22 NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site



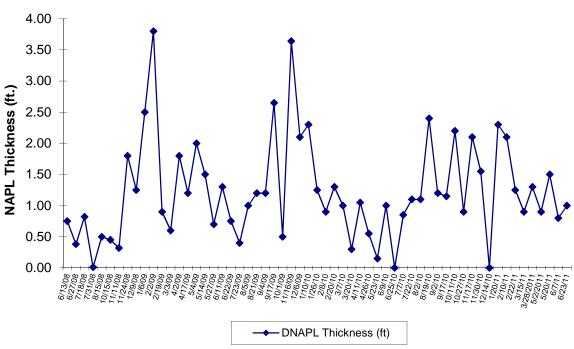
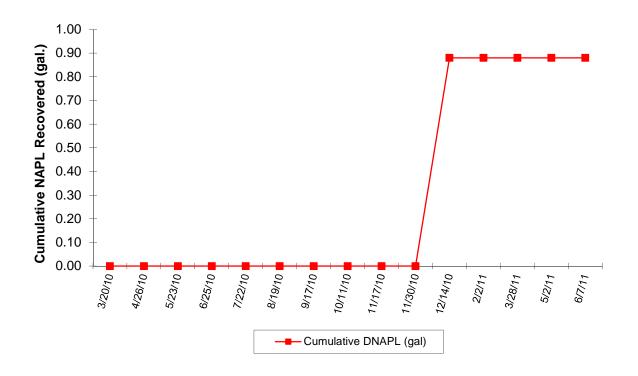




FIGURE 9AD
Well IPR- 23 NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site



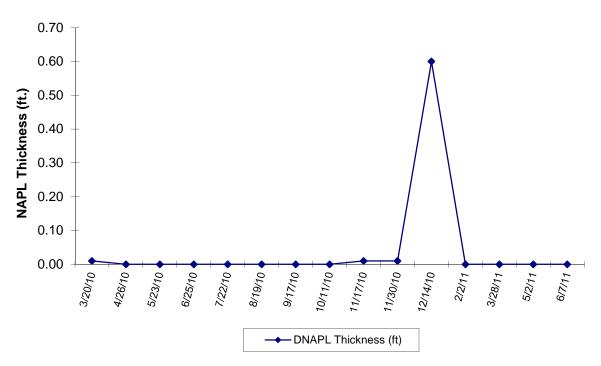
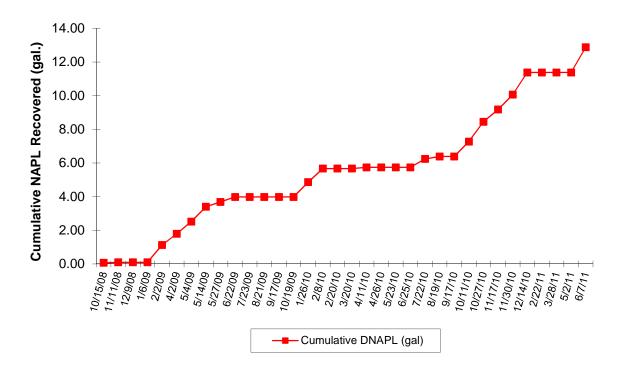




FIGURE 9AE
Well IPR-24 NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site



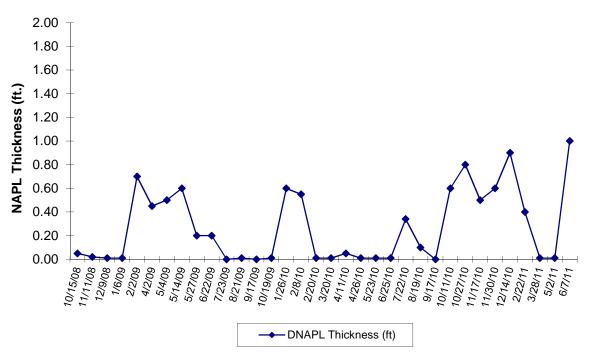
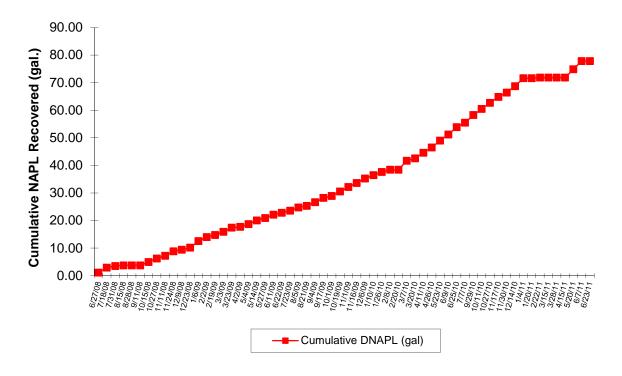




FIGURE 9AF
Well IPR-25 NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site



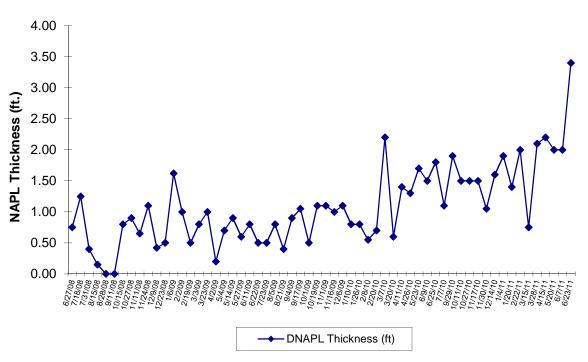



FIGURE 9AG
Well IPR-26 NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site



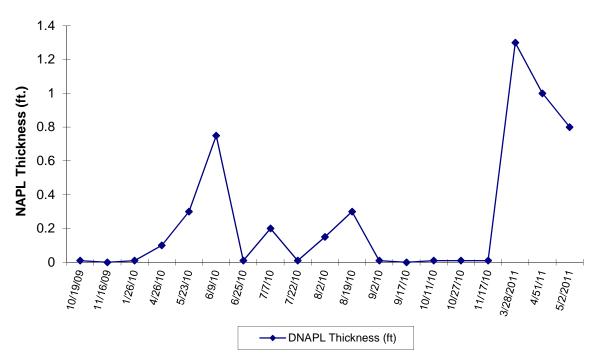
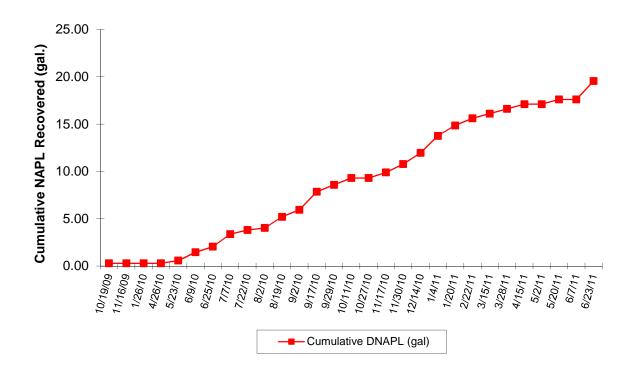




FIGURE 9AH
Well IPR-27 NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site



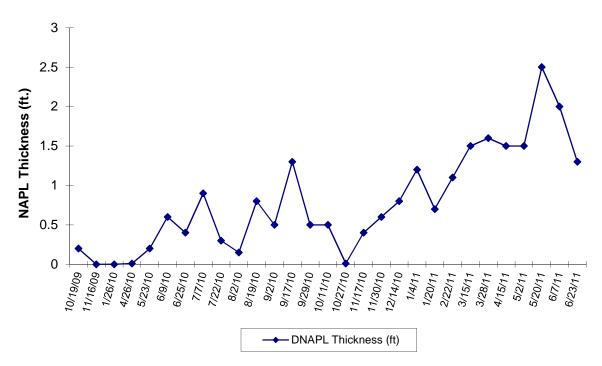
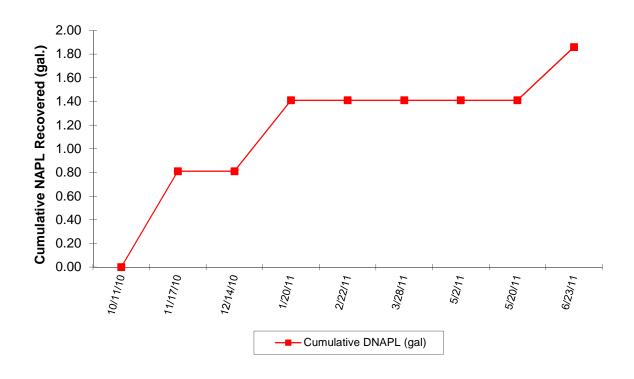




FIGURE 9AI
Well IPR-28 NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site



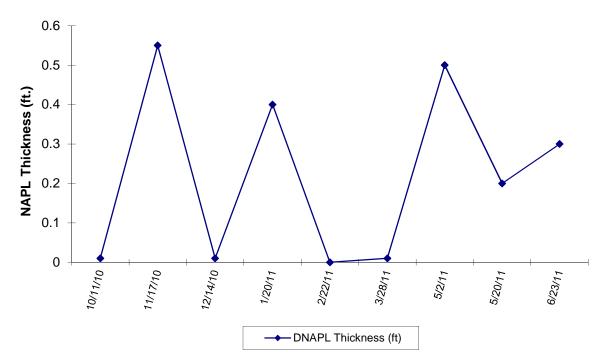
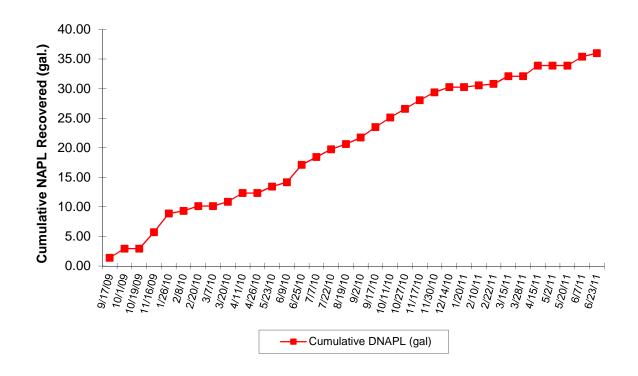




FIGURE 9AJ
Well IPR-29 NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site



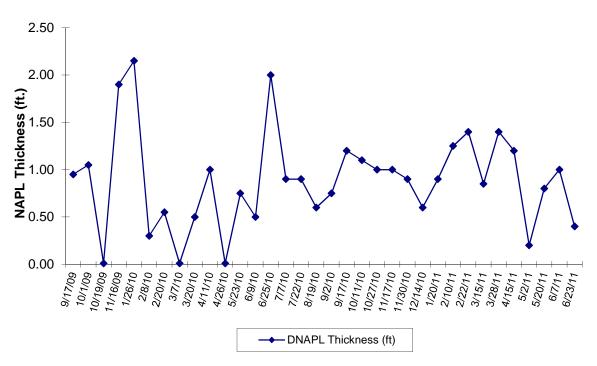
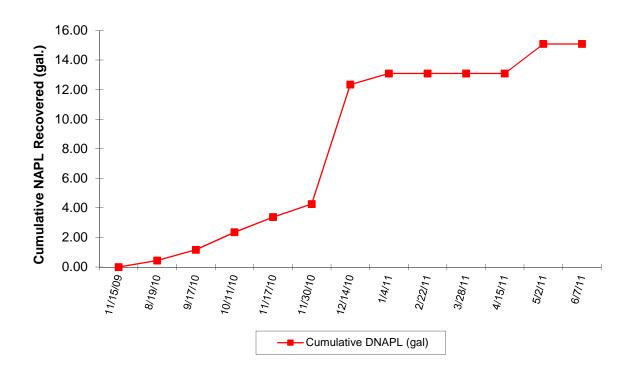
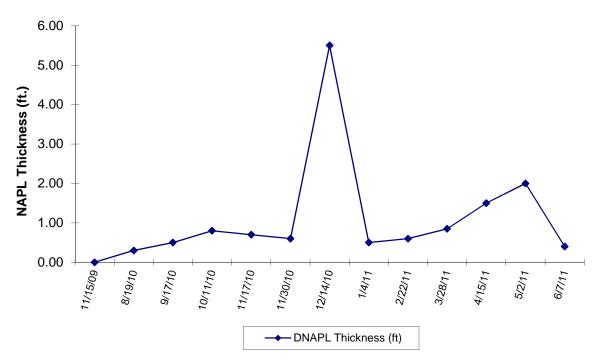





FIGURE 9AK
Well IPR-30 NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site





## APPENDIX A DATA USABILITY SUMMARY REPORT

(Provided in Electronic Format Only)

## APPENDIX A DATA USABILITY SUMMARY REPORT SECOND QUARTER 2011

## HEMPSTEAD INTERSECTION STREET FORMER MGP SITE VILLAGES OF GARDEN CITY AND HEMPSTEAD LONG ISLAND, NEW YORK

Analyses Performed by: H2M LABORATORIES, INC.

**Prepared For:** 

NATIONAL GRID

175 EAST OLD COUNTRY RD.
HICKSVILLE, NY 11801

Prepared by:

URS CORPORATION 77 GOODELL STREET BUFFALO, NY 14203

# TABLE OF CONTENTS

|         | Page No.                                         |  |  |  |  |  |  |
|---------|--------------------------------------------------|--|--|--|--|--|--|
| I.      | INTRODUCTION                                     |  |  |  |  |  |  |
| II.     | ANALYTICAL METHODOLOGIES AND DATA VALIDATION A-1 |  |  |  |  |  |  |
| III.    | DATA DELIVERABLE COMPLETENESS                    |  |  |  |  |  |  |
| IV.     | SAMPLE RECEIPT/HOLDING TIMES                     |  |  |  |  |  |  |
| V.      | NON-CONFORMANCES                                 |  |  |  |  |  |  |
| VI.     | SAMPLE RESULTS AND REPORTING                     |  |  |  |  |  |  |
| VII.    | SUMMARY                                          |  |  |  |  |  |  |
|         | TABLES (Following Text)                          |  |  |  |  |  |  |
| Table A | Validated Groundwater Sample Analytical Results  |  |  |  |  |  |  |
| Table A | Validated Field QC Sample Analytical Results     |  |  |  |  |  |  |
|         | APPENDICES (Following Tables)                    |  |  |  |  |  |  |
| Attachn | nent A Validated Form 1's                        |  |  |  |  |  |  |
| Attachn | nent B Support Documentation                     |  |  |  |  |  |  |

#### I. INTRODUCTION

This Data Usability Summary Report (DUSR) has been prepared following the guidelines provided in New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation *DER-10*, *Technical Guidance for Site Investigation and Remediation*, *Appendix 2B - Guidance for Data Deliverables and Development of Data Usability Summary Reports*, May 2010.

Analytical data for twenty-five (25) groundwater samples, two (2) field duplicates, one (1) matrix spike/matrix spike duplicate (MS/MSD) pair, one (1) field blank, and four (4) trip blanks collected by URS personnel from May 24 to June 3, 2011 are discussed in this DUSR. The samples were collected as part of the 2011 second quarter groundwater monitoring event at the Hempstead Intersection Street Former MGP Site.

#### II. ANALYTICAL METHODOLOGIES AND DATA VALIDATION

The samples were analyzed by H2M Laboratories, Inc. (Melville, NY) for the following parameters:

- Benzene, toluene, ethylbenzene, and xylene (BTEX) USEPA Method SW8260B, and
- Polynuclear aromatic hydrocarbons (PAHs) USEPA Method SW8270C.

A limited data validation was performed on the samples in accordance with the guidelines presented in the following USEPA Region II documents:

- Validating Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry SW-846 Method 8260B, SOP HW-24, Rev. 2, August 2008; and
- Validating Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry SW-846 Method 8270D, SOP HW-22, Rev. 4, August 2008.

The limited data validation included a review of completeness of all required deliverables; holding times; quality control (QC) results (i.e., instrument tunes, calibration standards, blanks, matrix spike recoveries, field duplicate analyses, laboratory control sample recoveries, and surrogate/internal standard recoveries) to determine if the data are within the protocol-required QC limits and specifications; a determination that all samples were analyzed using established and agreed upon analytical protocols; an evaluation of the raw data to confirm the results provided in the data summary sheets; and a review of laboratory data qualifiers.

Qualifications applied to the data during the data validation process include "J" (estimated) and 'UJ' (estimated quantitation limit). The validated analytical results are presented in Tables A-1 and A-2. Copies of the validated laboratory results (i.e., Form 1's) are presented in Attachment A. Copies of the chain-of-custodies, case narratives, and documentation supporting the qualification of data are presented in Attachment B. Only problems affecting data usability are discussed in this report.

#### III. DATA DELIVERABLE COMPLETENESS

Full deliverable data packages (i.e., NYSDEC ASP Category B or equivalent) were provided by the laboratory, and included all reporting forms and raw data necessary to fully evaluate and verify the reported analytical results.

### IV. SAMPLE RECEIPT/HOLDING TIMES

All samples were received by the laboratory intact, properly preserved, and under proper chain-of-custody (COC), except for the following instances, where qualification of the data was necessary.

• The cooler temperatures associated with the following groundwater samples were above 10°C: HIMW-03S, -05D, -05I, -14D, -14I (plus field duplicate), -15D, -15I, -20I, -20S, -22, -23, -24, and -25. The BTEX and PAH results for these samples were qualified as 'J' or 'UJ' per USEPA Region II data validation guidelines.

• The collection dates for the trip blanks were incorrectly referenced on the COCs (i.e., 05/19/11), which corresponds to the date they were prepared at the lab. They should correspond to the collection dates of the associated samples.

All samples were analyzed within the required holding times.

# V. NON-CONFORMANCES

Besides the cooler temperature exceedances noted above, there were no non-conformances that affected the usability of the data.

#### VI. SAMPLE RESULTS AND REPORTING

All sample results were reported in accordance with method requirements and were adjusted for sample size and dilution factors. BTEX and PAH results detected below the quantitation limits were qualified 'J' by the laboratory. The results reported from secondary dilution analyses were qualified 'D' by the laboratory.

Field duplicates were collected from monitoring well locations HIMW-12S and -014I, which exhibited good field and analytical precision.

#### VII. SUMMARY

All sample analyses were found to be compliant with the method and validation criteria, and the data are usable as reported, except for those results qualified 'J' or 'UJ', which should be considered conditionally usable. URS does not recommend the re-collection of any samples at this time.

Prepared By:

| Car | Date: 7/15/11
| Peter R. Fairbanks, Senior Chemist

| Reviewed By: | George E. Kisluk, Senior Chemist | Date: 7/15/11

### **DEFINITIONS OF USEPA REGION II DATA QUALIFIERS**

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
- D The sample results are reported from a separate secondary dilution analysis.
- NJ The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

| Location ID                             |       |           | HIMW-003D   | HIMW-003I   | HIMW-003S   | HIMW-005D   | HIMW-005I   |
|-----------------------------------------|-------|-----------|-------------|-------------|-------------|-------------|-------------|
| Sample ID                               |       |           | HIMW-3D     | HIMW-31     | HIMW-3S     | HIMW-5D     | HIMW-5I     |
| Matrix                                  |       |           | Groundwater | Groundwater | Groundwater | Groundwater | Groundwater |
| Depth Interval (f                       | t)    |           | -           | -           | -           | -           | -           |
| Date Sampled                            |       |           | 05/31/11    | 05/31/11    | 05/27/11    | 05/27/11    | 05/27/11    |
| Parameter                               | Units | Criteria* |             |             |             |             |             |
| Volatile Organic Compounds              |       |           |             |             |             |             |             |
| Benzene                                 | UG/L  | -         | 1 U         | 1 U         | 1 UJ        | 2 J         | 3 J         |
| Ethylbenzene                            | UG/L  | -         | 1 U         | 1 U         | 1 UJ        | 1 UJ        | 2 J         |
| Toluene                                 | UG/L  | -         | 1 U         | 1 U         | 1 UJ        | 1 J         | 1 J         |
| Xylene (total)                          | UG/L  | -         | 1 U         | 1 U         | 1 UJ        | 130 J       | 140 J       |
| Total BTEX                              | UG/L  | 100       | ND          | ND          | ND          | 133         | 146         |
| Semivolatile Organic Compounds          |       |           |             |             |             |             |             |
| 2-Methylnaphthalene                     | UG/L  | -         | 10 U        | 10 U        | 10 UJ       | 50 J        | 320 DJ      |
| Acenaphthene                            | UG/L  | -         | 10 U        | 10 U        | 10 UJ       | 2 J         | 10 J        |
| Acenaphthylene                          | UG/L  | , -<br>   | 10 U        | 10 U        | 10 UJ       | 16 J        | 150 DJ      |
| Anthracene                              | UG/L  | -         | 10 U        | 10 U        | 10 UJ       | 10 UJ       | 2 J         |
| Benzo(a)anthracene                      | UG/L  | -         | 10 U        | 10 U        | 10 UJ       | 10 UJ       | 10 UJ       |
| Benzo(a)pyrene                          | UG/L  | -         | 10 U        | 10 U        | 10 UJ       | 10 UJ       | 10 UJ       |
| Benzo(b)fluoranthene                    | UG/L  | -         | 10 U        | 10 U        | 10 UJ       | 10 UJ       | 10 UJ       |
| Benzo(g,h,i)perylene                    | UG/L  | -         | 10 U        | 10 U        | 10 UJ       | 10 UJ       | 10 UJ       |
| Benzo(k)fluoranthene                    | UG/L  | -         | 10 U        | 10 U        | 10 UJ       | 10 UJ       | 10 UJ       |
| Chrysene                                | UG/L  | -         | 10 U        | 10 U        | 10 UJ       | 10 UJ       | 10 UJ       |
| Dibenz(a,h)anthracene                   | UG/L  | -         | 10 U        | 10 U        | 10 UJ       | 10 UJ       | 10 UJ       |
| Fluoranthene                            | UG/L  | -         | 10 U        | 10 U        | 10 UJ       | 10 UJ       | 10 UJ       |
| Fluorene                                | UG/L  | -         | 10 U        | 10 U        | 10 ປົ່ງ     | 3 J         | 24 J        |
| Indeno(1,2,3-cd)pyrene                  | UG/L  | -         | 10 U        | 10 U        | 10 UJ       | 10 UJ       | 10 UJ       |
| Naphthalene                             | UG/L  | -         | 10 U        | 10 ป        | 10 UJ       | 95 DJ       | 1,600 DJ    |
| Phenanthrene                            | UG/L  | -         | 10 U        | 10 U        | 10 UJ       | 10 UJ       | 14 J        |
| Pyrene                                  | UG/L  | -         | 10 U        | 10 U        | 10 UJ       | 10 UJ       | 10 UJ       |
| Total Polynuclear Aromatic Hydrocarbons | UG/L  | 100       | ND          | ND          | ND          | 166         | 2,120       |

<sup>\*</sup>Criteria- Goundwater Plume Delineation/Design Criteria, Pre-Design Investigation Work Plan for In-Situ Solidification for the Hempstead Intersection Street Former MGP Site, Appendix E, Final, URS 2008.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

D - Result reported from a secondary dilution analysis.

Made By\_PRF 07/12/11\_; Checked By\_OLICE 1/13/11

U - Not detected above the reported quantitation limit. J - The reported concentration is an estimated value.

UJ - Not detected. The reported quantitation limit is an estimated value.

| Location ID                                |       |           | HIMW-005S   | HIMW-008D   | HIMW-008I   | HIMW-008S                             | HIMW-012D   |
|--------------------------------------------|-------|-----------|-------------|-------------|-------------|---------------------------------------|-------------|
| Sample ID                                  |       |           | HIMW-5S     | HIMW-8D     | HIMW-81     | HIMW-8S                               | HIMW-12D    |
| Matrix                                     |       |           | Groundwater | Groundwater | Groundwater | Groundwater                           | Groundwater |
| Depth Interval (f                          | t)    |           | -           | -           | -           | -                                     | -           |
| Date Sampled                               | 1     |           | 06/01/11    | 06/02/11    | 06/02/11    | 06/02/11                              | 06/01/11    |
| Parameter                                  | Units | Criteria* |             |             |             |                                       |             |
| Volatile Organic Compounds                 |       |           |             |             |             | -                                     |             |
| Benzene                                    | UG/L  | -         | 1.0 U       | 1.0 U       | 1.0 U       | 1.0 U                                 | 1.0 U       |
| Ethylbenzene                               | UG/L  | -         | 1.0 U       | 1.0 U       | 1.0 U       | 1.0 U                                 | 1.0 U       |
| Toluene                                    | UG/L  | -         | 1.0 U       | 1.0 U       | 1.0 U       | 1.0 U                                 | 1.0 U       |
| Xylene (total)                             | UG/L  | -         | 1.0 U       | 1.0 U       | 1.0 U       | 1.0 U                                 | 1.0 U       |
| Total BTEX                                 | UG/L  | 100       | ND          | ND          | ND          | ND                                    | ND          |
| Semivolatile Organic Compounds             |       |           | -           |             |             | · · · · · · · · · · · · · · · · · · · |             |
| 2-Methylnaphthalene                        | UG/L  | -         | 10 U        | 10 U        | 10 U        | 10 U                                  | 10 U        |
| Acenaphthene                               | UG/L  | -         | 10 U        | 10 U        | 10 U        | 10 U                                  | 10 U        |
| Acenaphthylene                             | UG/L  | -         | 10 U        | 10 U        | 10 U        | 2 J                                   | 10 U        |
| Anthracene                                 | UG/L  | -         | 10 U        | 10 U        | 10 U        | 10 U                                  | 10 U        |
| Benzo(a)anthracene                         | UG/L  | -         | 10 U        | 10 U        | 10 U        | 10 U                                  | 10 U        |
| Benzo(a)pyrene                             | UG/L  | -         | 10 U        | 10 U        | 10 U        | 1 J                                   | 10 U        |
| Benzo(b)fluoranthene                       | UG/L  | -         | 10 U        | 10 U        | 10 U        | 10 U                                  | 10 U        |
| Benzo(g,h,i)perylene                       | UG/L  | -         | 10 U        | 10 U        | 10 U        | 10 U                                  | 10 U        |
| Benzo(k)fluoranthene                       | UG/L  | -         | 10 Ü        | 10 U        | 10 U        | 10 U                                  | 10 U        |
| Chrysene                                   | UG/L  | -         | 10 U        | 10 U        | 10 U        | 10 U                                  | 10 U        |
| Dibenz(a,h)anthracene                      | UG/L  | -         | 10 U        | 10 U        | 10 U        | 10 U                                  | 10 U        |
| Fluoranthene                               | UG/L  | -         | 10 U        | 10 U        | 10 U        | 10 U                                  | 10 U        |
| Fluorene                                   | UG/L  | -         | 10 U        | 10 U        | 10 U        | 10 U                                  | 10 U        |
| Indeno(1,2,3-cd)pyrene                     | UG/L  | -         | 10 U        | 10 U        | 10 U        | 10 Ü                                  | 10 U        |
| Naphthalene                                | UG/L  | -         | 10 U        | 10 U        | 10 U        | 10 U                                  | 10 U        |
| Phenanthrene                               | UG/L  | -         | 10 U        | 10 U        | 10 U        | 10 U                                  | 10 U        |
| Pyrene                                     | UG/L  | -         | 10 U        | 10 U        | 10 U        | 10 U                                  | 10 U        |
| Total Polynuclear Aromatic<br>Hydrocarbons | UG/L  | 100       | ND          | ND          | ND          | 3                                     | ND          |

<sup>\*</sup>Criteria- Goundwater Plume Delineation/Design Criteria, Pre-Design Investigation Work Plan for In-Situ Solidification for the Hempstead Intersection Street Former MGP Site, Appendix E, Final, URS 2008.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

U - Not detected above the reported quantitation limit. J - The reported concentration is an estimated value.

UJ - Not detected. The reported quantitation limit is an estimated value.

| Location ID                                |       |           | HIMW-012I   | HIMW-012S             | HIMW-012S   | HIMW-013D   | HIMW-013I   |
|--------------------------------------------|-------|-----------|-------------|-----------------------|-------------|-------------|-------------|
| Sample ID                                  |       |           | HIMW-12I    | DUP11 0531            | HIMW-12S    | HIMW-13D    | HIMW-13I    |
| Matrix                                     |       |           | Groundwater | Groundwater           | Groundwater | Groundwater | Groundwater |
| Depth Interval (f                          | t)    |           | •           | -                     | -           | •           | <u>-</u>    |
| Date Sampled                               |       |           | 05/31/11    | 05/31/11              | 05/31/11    | 05/24/11    | 05/24/11    |
| Parameter                                  | Units | Criteria* |             | Field Duplicate (1-1) |             |             |             |
| Volatile Organic Compounds                 |       |           |             |                       |             |             |             |
| Benzene                                    | UG/L  | -         | 54          | 1 U                   | 1 U         | 2           | 140         |
| Ethylbenzene                               | UG/L  | -         | 3           | 1 U                   | 1 U         | 1 U         | 1 U         |
| Toluene                                    | UG/L  | -         | 1 U         | 1 U                   | 1 U         | 1 U         | 1 U         |
| Xylene (total)                             | UG/L  | -         | 7           | 1 U                   | 1 U         | 1 U         | 2           |
| Total BTEX                                 | UG/L  | 100       | 64          | ND                    | ND          | 2           | 142         |
| Semivolatile Organic Compounds             |       | <u> </u>  |             | ::                    |             |             |             |
| 2-Methylnaphthalene                        | UG/L  | -         | 10 U        | 10 U                  | 10 U        | 10 U        | 10 U        |
| Acenaphthulas                              | UG/L  | -         | 39          | 10 U                  | 10 U        | 5 J         | 6 J         |
| Acenaphthylene Anthracene                  | UG/L  | -         | 37          | 10 U                  | 10 U        | 12          | 45          |
|                                            | UG/L  | -         | 10 U        | 10 U                  | 10 U        | 10 U        | 1 J         |
| Benzo(a)anthracene                         | UG/L  | -         | 10 U        | 10 U                  | 10 U        | 10 <b>U</b> | 10 U        |
| Benzo(a)pyrene                             | UG/L  | -         | 10 U        | 10 U                  | 10 U        | 10 U        | 10 U        |
| Benzo(b)fluoranthene                       | UG/L  | -         | 10 U        | 10 U                  | 10 U        | 10 U        | 10 U        |
| Benzo(g,h,i)perylene                       | UG/L  | -         | 10 U        | 10 U                  | 10 U        | 10 U        | 10 U        |
| Benzo(k)fluoranthene                       | UG/L  | -         | 10 U        | 10 U                  | 10 U        | 10 U        | 10 U        |
| Chrysene                                   | UG/L  | -         | 10 U        | 10 U                  | 10 U        | 10 U        | 10 Ū        |
| Dibenz(a,h)anthracene                      | UG/L  | -         | 10 U        | 10 U                  | 10 U        | 10 U        | 10 U        |
| Fluoranthene                               | UG/L  | -         | 10 U        | 10 U                  | 10 U        | 10 U        | 10 U        |
| Fluorene                                   | UG/L  | -         | 22          | 10 U                  | 10 U        | 10 U        | 8 J         |
| Indeno(1,2,3-cd)pyrene                     | UG/L  | -         | 10 U        | 10 U                  | 10 U        | 10 U        | 10 U        |
| Naphthalene                                | UG/L  | -         | 4 J         | 10 U                  | 10 U        | 10 ປ        | 10 U        |
| Phenanthrene                               | UG/L  | -         | 61          | 10 U                  | 10 U        | 10 U        | 7 J         |
| Pyrene                                     | UG/L  | -         | 10 U        | 10 U                  | 10 U        | 10 U        | 10 U        |
| Total Polynuclear Aromatic<br>Hydrocarbons | UG/L  | 100       | 108         | ND                    | ND          | 17          | 67          |

<sup>\*</sup>Criteria- Goundwater Plume Delineation/Design Criteria, Pre-Design Investigation Work Plan for In-Situ Solidification for the Hempstead Intersection Street Former MGP Site, Appendix E, Final, URS 2008.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

 $<sup>{</sup>f U}$  - Not detected above the reported quantitation limit.  ${f J}$  - The reported concentration is an estimated value.

UJ - Not detected. The reported quantitation limit is an estimated value.

| Location ID                                |       |           | HIMW-013S   | HIMW-014D   | HIMW-014I             | HIMW-014I   | HIMW-015D     |
|--------------------------------------------|-------|-----------|-------------|-------------|-----------------------|-------------|---------------|
| Sample ID                                  |       |           | HIMW-13S    | HIMW-14D    | DUP11 0526            | HIMW-14I    | HIMW-15D      |
| Matrix                                     |       |           | Groundwater | Groundwater | Groundwater           | Groundwater | Groundwater   |
| Depth Interval (f                          | t)    |           | -           | -           | •                     | -           | -             |
| Date Sampled                               |       |           | 05/24/11    | 05/26/11    | 05/26/11              | 05/26/11    | 05/25/11      |
| Parameter                                  | Units | Criteria* |             |             | Field Duplicate (1-1) |             |               |
| Volatile Organic Compounds                 |       |           |             |             |                       |             | <del></del> : |
| Benzene                                    | UG/L  | -         | 1 U         | 1 UJ        | 24 J                  | 24 J        | 1 UJ          |
| Ethylbenzene                               | UG/L  | -         | 1 <b>U</b>  | 1 UJ        | 3 J                   | 3 J         | 1 UJ          |
| Toluene                                    | UG/L  | -         | 1 U         | 1 UJ        | 1 UJ                  | 1 UJ        | 1 UJ          |
| Xylene (total)                             | UG/L  | -         | 1 U         | 1 UJ        | 2 J                   | 2 J         | 1 UJ          |
| Total BTEX                                 | UG/L  | 100       | ND          | ND          | 29                    | 29          | ND            |
| Semivolatile Organic Compounds             |       |           |             |             |                       |             |               |
| 2-Methylnaphthalene                        | UG/L  | -         | 10 U        | 10 UJ       | 10 UJ                 | 10 UJ       | 10 UJ         |
| Acenaphthene                               | UG/L  | -         | 10 U        | 10 UJ       | 12 J                  | 14 J        | 10 UJ         |
| Acenaphthylene                             | UG/L  | -         | 10 U        | 10 UJ       | 14 J                  | 17 J        | 10 UJ         |
| Anthracene                                 | UG/L  | -         | 10 U        | 10 UJ       | 10 UJ                 | 10 UJ       | 10 UJ         |
| Benzo(a)anthracene                         | UG/L  | -         | 10 U        | 10 UJ       | 10 UJ                 | 10 UJ       | 10 UJ         |
| Benzo(a)pyrene                             | UG/L  | -         | 10 U        | 10 UJ       | 10 UJ                 | 10 UJ       | 10 UJ         |
| Benzo(b)fluoranthene                       | UG/L  | •         | 10 U        | 10 UJ       | 10 UJ                 | 10 UJ       | 10 UJ         |
| Benzo(g,h,i)perylene                       | UG/L  | -         | 10 U        | 10 UJ       | 10 UJ                 | 10 UJ       | 10 UJ         |
| Benzo(k)fluoranthene                       | UG/L  | -         | 10 U        | 10 UJ       | 10 UJ                 | 10 UJ       | 10 UJ         |
| Chrysene                                   | UG/L  | -         | 10 U        | 10 UJ       | 10 UJ                 | 10 UJ       | 10 UJ         |
| Dibenz(a,h)anthracene                      | UG/L  | -         | 10 U        | 10 UJ       | 10 UJ                 | 10 UJ       | 10 UJ         |
| Fluoranthene                               | UG/L  | -         | 10 U        | 10 UJ       | 10 UJ                 | 10 UJ       | 10 UJ         |
| Fluorene                                   | UG/L  | · .       | 10 U        | 10 UJ       | 5 J                   | 6 J         | 10 UJ         |
| Indeno(1,2,3-cd)pyrene                     | UG/L  | -         | 10 U        | 10 UJ       | 10 UJ                 | 10 UJ       | 10 UJ         |
| Naphthalene                                | UG/L  | -         | 10 Ü        | 10 UJ       | 10 UJ                 | 10 UJ       | 10 UJ         |
| Phenanthrene                               | UG/L  | -         | 10 U        | 10 UJ       | 4 J                   | 5 J         | 10 UJ         |
| Pyrene                                     | UG/L  | -         | 10 U        | 10 UJ       | 10 UJ                 | 10 UJ       | 10 UJ         |
| Total Polynuclear Aromatic<br>Hydrocarbons | UG/L  | 100       | ND          | ND          | 35                    | 42          | ND            |

<sup>\*</sup>Criteria- Goundwater Plume Delineation/Design Criteria, Pre-Design Investigation Work Plan for In-Situ Solidification for the Hempstead Intersection Street Former MGP Site, Appendix E, Final, URS 2008.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

U - Not detected above the reported quantitation limit. J - The reported concentration is an estimated value.

UJ - Not detected. The reported quantitation limit is an estimated value.

| Location ID                                |          |           | HIMW-015I   | HIMW-0201   | HIMW-020S   | HIMW-022                                      | HIMW-023    |
|--------------------------------------------|----------|-----------|-------------|-------------|-------------|-----------------------------------------------|-------------|
| Sample ID                                  |          |           | HIMW-15I    | HIMW-20I    | HIMW-20S    | HIMW-22                                       | HIMW-23     |
| Matrix                                     |          |           | Groundwater | Groundwater | Groundwater | Groundwater                                   | Groundwater |
| Depth Interval (f                          | t)       |           | •           | -           | -           | -                                             | •           |
| Date Sampled                               | 1        |           | 05/25/11    | 06/03/11    | 06/03/11    | 05/26/11                                      | 05/26/11    |
| Parameter                                  | Units    | Criteria* |             |             |             |                                               |             |
| Volatile Organic Compounds                 | <u> </u> |           |             |             |             | <u>, '' , ''                             </u> |             |
| Benzene                                    | UG/L     | -         | 23 J        | 28 J        | 1.0 UJ      | 1 UJ                                          | 14 J        |
| Ethylbenzene                               | UG/L     | -         | 1 UJ        | 19 J        | 1.0 UJ      | 1 UJ                                          | 27 J        |
| Toluene                                    | UG/L     | -         | 1 UJ        | 1 J         | 1.0 UJ      | 1 UJ                                          | 1 UJ        |
| Xylene (total)                             | UG/L     | -         | 1 UJ        | 150 J       | 1.0 UJ      | 1 UJ                                          | 2 J         |
| Total BTEX                                 | UG/L     | 100       | 23          | 198         | ND          | ND                                            | 43          |
| Semivolatile Organic Compounds             |          |           |             |             |             |                                               |             |
| 2-Methylnaphthalene                        | UG/L     |           | 10 UJ       | 50 J        | 10 UJ       | 10 UJ                                         | 10 UJ       |
| Acenaphthene                               | UG/L     | -         | 5 J         | 11 J        | 10 UJ       | 10 UJ                                         | 1 J         |
| Acenaphthylene                             | UG/L     | -         | 23 J        | 120 DJ      | 10 UJ       | 10 ŪJ                                         | 6 J         |
| Anthracene                                 | UG/L     | -         | 10 ÜJ       | 2 J         | 10 UJ       | 10 UJ                                         | 10 UJ       |
| Benzo(a)anthracene                         | UG/L     | -         | 10 UJ       | 10 UJ       | 10 UJ       | 10 UJ                                         | 10 UJ       |
| Benzo(a)pyrene                             | UG/L     | -         | 10 UJ       | 10 UJ       | 10 UJ       | 10 UJ                                         | 10 UJ       |
| Benzo(b)fluoranthene                       | UG/L     | -         | 10 UJ       | 10 UJ       | 10 UJ       | 10 UJ                                         | 10 UJ       |
| Benzo(g,h,i)perylene                       | UG/L     | -         | 10 UJ       | 10 UJ       | 10 UJ       | 10 UJ                                         | 10 UJ       |
| Benzo(k)fluoranthene                       | UG/L     | -         | 10 UJ       | 10 UJ       | 10 UJ       | 10 UJ                                         | 10 UJ       |
| Chrysene                                   | UG/L     |           | 10 UJ       | 10 UJ       | 10 UJ       | 10 UJ                                         | 10 UJ       |
| Dibenz(a,h)anthracene                      | UG/L     | -         | 10 UJ       | 10 UJ       | 10 UJ       | 10 UJ                                         | 10 UJ       |
| Fluoranthene                               | UG/L     | -         | 10 UJ       | 10 UJ       | 10 UJ       | 10 UJ                                         | 10 UJ       |
| Fluorene                                   | UG/L     | -         | 10 UJ       | 19 J        | 10 UJ       | 10 UJ                                         | 2 J         |
| Indeno(1,2,3-cd)pyrene                     | UG/L     | -         | 10 UJ       | 10 UJ       | 10 UJ       | 10 UJ                                         | 10 UJ       |
| Naphthalene                                | UG/L     | -         | 10 UJ       | 310 DJ      | 10 UJ       | 10 UJ                                         | 10 UJ       |
| Phenanthrene                               | UG/L     | -         | 3 J         | 18 J        | 10 UJ       | 10 UJ                                         | 2 J         |
| Pyrene                                     | UG/L     | -         | 10 UJ       | 10 UJ       | 10 UJ       | 10 UJ                                         | 10 UJ       |
| Total Polynuclear Aromatic<br>Hydrocarbons | UG/L     | 100       | 31          | 530         | ND          | ND                                            | 11          |

<sup>\*</sup>Criteria- Goundwater Plume Delineation/Design Criteria, Pre-Design Investigation Work Plan for In-Situ Solidification for the Hempstead Intersection Street Former MGP Site, Appendix E, Final, URS 2008.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

 $<sup>{\</sup>tt U}$  - Not detected above the reported quantitation limit.  ${\tt J}$  - The reported concentration is an estimated value.

UJ - Not detected. The reported quantitation limit is an estimated value.

| Location ID                                | HIMW-024    | HIMW-025    |          |          |
|--------------------------------------------|-------------|-------------|----------|----------|
| Sample ID                                  | HIMW-24     | HIMW-25     |          |          |
| Matrix                                     | Groundwater | Groundwater |          |          |
| Depth Interval (f                          | -           | -           |          |          |
| Date Sampled                               |             |             | 05/25/11 | 05/25/11 |
| Parameter                                  | Units       | Criteria*   |          |          |
| Volatile Organic Compounds                 | T           |             |          |          |
| Benzene                                    | UG/L        | -           | 400 DJ   | 350 DJ   |
| Ethylbenzene                               | UG/L        | -           | 120 J    | 2 ปัง    |
| Toluene                                    | UG/L        | -           | 30 J     | 20 J     |
| Xylene (total)                             | UG/L        | -           | 320 J    | 180 J    |
| Total BTEX                                 | UG/L        | 100         | 870      | 552      |
| Semivolatile Organic Compounds             |             |             |          |          |
| 2-Methylnaphthalene                        | UG/L        | -           | 65 J     | 9 J      |
| Acenaphthene                               | UG/L        | ,           | 17 J     | 2 J      |
| Acenaphthylene                             | UG/L        | -           | 48 J     | 26 J     |
| Anthracene                                 | UG/L        | -           | 2 J      | 10 UJ    |
| Benzo(a)anthracene                         | UG/L        | -           | 10 UJ    | 10 UJ    |
| Benzo(a)pyrene                             | UG/L        | -           | 10 UJ    | 10 UJ    |
| Benzo(b)fluoranthene                       | UG/L        | -           | 10 UJ    | 10 UJ    |
| Benzo(g,h,i)perylene                       | UG/L        | -           | 10 UJ    | 10 UJ    |
| Benzo(k)fluoranthene                       | UG/L        | -           | 10 UJ    | 10 UJ    |
| Chrysene                                   | UG/L        | -           | 10 UJ    | 10 UJ    |
| Dibenz(a,h)anthracene                      | UG/L        | -           | 10 UJ    | 10 UJ    |
| Fluoranthene                               | UG/L        |             | 10 UJ    | 10 UJ    |
| Fluorene                                   | UG/L        | -           | 3 J      | 3 J      |
| Indeno(1,2,3-cd)pyrene                     | UG/L        | -           | 10 UJ    | 10 UJ    |
| Naphthalene                                | UG/L        | -           | 870 DJ   | 530 DJ   |
| Phenanthrene                               | UG/L        | -           | 15 J     | 3 J      |
| Pyrene                                     | UG/L        | -           | 10 UJ    | 10 UJ    |
| Total Polynuclear Aromatic<br>Hydrocarbons | UG/L        | 100         | 1,020    | 573      |

<sup>\*</sup>Criteria- Goundwater Plume Delineation/Design Criteria, Pre-Design Investigation Work Plan for In-Situ Solidification for the Hempstead Intersection Street Former MGP Site, Appendix E, Final, URS 2008.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

U - Not detected above the reported quantitation limit. J - The reported concentration is an estimated value.

UJ - Not detected. The reported quantitation limit is an estimated value.

| Location ID                                |       |           | FIELDQC          | FIELDQC          | FIELDQC          | FIELDQC          | FIELDQC           |
|--------------------------------------------|-------|-----------|------------------|------------------|------------------|------------------|-------------------|
| Sample ID                                  |       |           | TB 052411        | TRIP BLANK       | TRIP BLANK       | TRIP BLANK       | Field Blank       |
| Matrix Matrix                              |       |           | Water Quality     |
| Depth Interval (                           |       |           |                  | -                | -                | -                | <u>-</u>          |
| Date Sampled                               |       |           | 05/24/11         | 05/25/11         | 05/27/11         | 05/31/11         | 06/02/11          |
| Parameter                                  | Units | Criteria* | Trip Blank (1-1) | Trip Blank (1-1) | Trip Blank (1-1) | Trip Blank (1-1) | Field Blank (1-1) |
| Volatile Organic Compounds                 |       |           |                  |                  |                  |                  |                   |
| Benzene                                    | UG/L  | -         | 1 U              | 1 Ū              | 10               | 1 U              | 1 U               |
| Ethylbenzene                               | UG/L  | -         | 1 U              | 1 U              | 1 U              | 1 U              | 1 U               |
| Toluene                                    | UG/L  | -         | 1 Ü              | 1 U              | 1 U              | 1 U              | 1 Ü               |
| Xylene (total)                             | UG/L  | -         | 1 U              | 1 U              | 1 U              | 1 U              | 1 U               |
| Total BTEX                                 | UG/L  | 100       | ND               | ND               | ND               | ND               | ND                |
| Semivolatile Organic Compounds             |       |           |                  |                  |                  |                  |                   |
| 2-Methylnaphthalene                        | UG/L  | -         | NA NA            | NA               | NA NA            | NA -             | 10 U              |
| Acenaphthene                               | UG/L  | -         | NA               | NA               | NA               | NA               | 10 U              |
| Acenaphthylene                             | UG/L  | -         | NA               | NA<br>           | NA               | NA               | 10 U              |
| Anthracene                                 | UG/L  | ·         | NA               | NA               | NA               | NA               | 10 U              |
| Benzo(a)anthracene                         | UG/L  | -         | NA               | NA               | NA               | NA               | 10 U              |
| Benzo(a)pyrene                             | UG/L  | -         | NA               | NA .             | NA<br>———        | NA               | 10 U              |
| Benzo(b)fluoranthene                       | UG/L  | -         | NA               | NA NA            | NA               | NA               | 10 U              |
| Benzo(g,h,i)perylene                       | UG/L  | -         | NA               | NA               | NA               | NA               | 10 U              |
| Benzo(k)fluoranthene                       | UG/L  | -         | NA NA            | NA .             | NA               | NA               | 10 U              |
| Chrysene                                   | UG/L  | -         | NA               | NA               | NA               | NA               | 10 U              |
| Dibenz(a,h)anthracene                      | UG/L  | -         | NA               | NA               | NA               | NA               | 10 U              |
| Fluoranthene                               | UG/L  | -         | NA               | NA               | NA NA            | NA               | 10 U              |
| Fluorene                                   | UG/L  | -         | NA               | NA               | NA               | NA               | 10 U              |
| Indeno(1,2,3-cd)pyrene                     | UG/L  | -         | NA               | NA .             | NA               | NA               | 10 U              |
| Naphthalene                                | UG/L  | -         | NA               | NA               | NA               | NA               | 10 U              |
| Phenanthrene                               | UG/L  | -         | NA               | NA               | NA               | NA               | 10 U              |
| Pyrene                                     | UG/L  | -         | NA               | NA               | NA               | NA               | 10 U              |
| Total Polynuclear Aromatic<br>Hydrocarbons | UG/L  | 100       | NA               | NA               | NA               | NA               | ND                |

<sup>\*</sup>Criteria- Goundwater Plume Delineation/Design Criteria, Pre-Design Investigation Work Plan for In-Situ Solidification for the Hempstead Intersection Street Former MGP Site, Appendix E, Final, URS 2008.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

U - Not detected above the reported quantitation limit.

NA - The sample was not analyzed for this parameter.

# ATTACHMENT A VALIDATED FORM 1'S

#### 1B

#### VOLATILE ORGANICS ANALYSIS DATA SHEET

| EPA | SAMPLE | NΩ  |
|-----|--------|-----|
| EFF |        | 310 |

HIMW-13D

| Lab Name: H2M LABS INC Contract: | Lab Name: | H2M LABS INC | Contract: |  |
|----------------------------------|-----------|--------------|-----------|--|
|----------------------------------|-----------|--------------|-----------|--|

Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS120

Matrix: (soil/water) WATER Lab Sample ID: 1105963-001A

Sample wt/vol:  $\underline{5}$  (g/mL)  $\underline{ML}$  Lab File ID:  $\underline{1}$ E10821.D

Level: (low/med) LOW Date Received: 05/24/11

% Moisture: not dec. Date Analyzed: 06/03/11

GC Column: Rxi-1MS ID: .32 (mm) Dilution Factor: 1.00

Soil Extract Volume: (µL) Soil Aliquot Volume (µL)

| CAS NO.   | COMPOUND       | ( $\mu$ g/L or $\mu$ g/Kg) $\underline{\text{UG/L}}$ | Q |
|-----------|----------------|------------------------------------------------------|---|
| 71-43-2   | Benzene        | 2                                                    |   |
| 108-88-3  | Toluene        | 1                                                    | U |
| 100-41-4  | Ethylbenzene   | 1                                                    | U |
| 1330-20-7 | Xylene (total) | 1                                                    | U |

# VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

HIMW-13I

|                          | •                |                    |                   | •                   |
|--------------------------|------------------|--------------------|-------------------|---------------------|
| Lab Name: <u>H2M LAI</u> | BS INC           | Contr              | act:              |                     |
| Lab Code: H2M            | Case No.:        | KEY-URS SAS        | 3 No.:            | SDG No.: KEY-URS120 |
| Matrix: (soil/wate       | er) <u>WATER</u> |                    | Lab Sample ID:    | 1105963-002A        |
| Sample wt/vol:           | <u>5</u> (g/m    | L) ML              | Lab File ID:      | 1\E10822.D          |
| Level: (low/med)         | LOW              |                    | Date Received:    | 05/24/11            |
| % Moisture: not de       | ec.              |                    | Date Analyzed:    | 06/03/11            |
| GC Column: Rxi-1         | MS II            | ): <u>.32</u> (mm) | Dilution Factor:  | 1.00                |
| Soil Extract Volum       | ie:              | (pL)               | Soil Aliquot Volu | ume(µL)             |
|                          |                  |                    |                   |                     |

|                  | •              | CONCENTRATION UNITS:        |   |  |
|------------------|----------------|-----------------------------|---|--|
| CAS NO. COMPOUND |                | (µg/L or µg/Kg) <u>UG/L</u> |   |  |
| 71-43-2          | Benzene        | 140                         |   |  |
| 108-88-3         | Toluene        | 1                           | U |  |
| 100-41-4         | Ethylbenzene   | 1                           | U |  |
| 1330-20-7        | Xylene (total) | 2                           |   |  |

#### VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

HIMW-13S

| Lab Name:   | H2M LABS II | NC        | Co      | ontract: | <del></del>  |           |            |
|-------------|-------------|-----------|---------|----------|--------------|-----------|------------|
| Lab Code:   | <u>н2м</u>  | Case No.: | KEY-URS | SAS No.: | <del> </del> | SDG No.:  | KEY-URS120 |
| Matrix: (so | oil/water)  | WATER     |         | Lab      | Sample ID:   | 1105963-0 | 03A        |
| Sample wt/v | 701: 5      | (a/mL     | ) ML    | Lab      | File ID:     | 1\E10825  | n          |

Level: (low/med) LOW Date Received: 05/24/11

% Moisture: not dec. Date Analyzed: 06/03/11

GC Column: Rxi-1MS ID: .32 (mm) Dilution Factor: 1.00

Soil Extract Volume: (µL) Soil Aliquot Volume (µL)

| CAS NO.  | COMPOUND       | (µg/L or µg/Kg) UG/L |   |  |
|----------|----------------|----------------------|---|--|
| 71-43-   | Benzene        | 1                    | U |  |
| 108-88-  | Toluene        | 1                    | υ |  |
| 100-41-4 | Ethylbenzene   | 1                    | U |  |
| 1330-20- | Xylene (total) | 1                    | U |  |

### VOLATILE ORGANICS ANALYSIS DATA SHEET

Soil Extract Volume:

EPA SAMPLE NO.

TB 052411

| Lab Name:   | H2M LABS IN   | <u>4C</u> C       | ontract: |              |                     |
|-------------|---------------|-------------------|----------|--------------|---------------------|
| Lab Code:   | <u>H2M</u>    | Case No.: KEY-URS | SAS No.: |              | SDG No.: KEY-URS120 |
| Matrix: (so | oil/water)    | WATER             | Lab      | Sample ID:   | 1105963-004A        |
| Sample wt/v | rol: <u>5</u> | (g/mL) ML         | Lab      | File ID:     | 1\E10823.D          |
| Level: (1   | .ow/med)      | LOW               | Date     | Received:    | 05/24/11            |
| % Moisture: | not dec.      |                   | Date     | Analyzed:    | 06/03/11            |
| GC Column:  | Rxi-1MS       | ID: <u>.32</u> (1 | nm) Dilu | tion Factor: | 1.00                |

#### CONCENTRATION UNITS:

| CAS NO.  | COMPOUND         | (µg/L or µg/Kg) <u>UG/L</u> | Q |
|----------|------------------|-----------------------------|---|
| 71-43-   | 2 Benzene        | 1                           | U |
| 108-88-  | 3 Toluene        | 1                           | U |
| 100-41-  | 4 Ethylbenzene   | 1                           | U |
| 1330-20- | 7 Xylene (total) | 1                           | U |

( $\mu L$ ) Soil Aliquot Volume ( $\mu L$ )

#### VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

HIMW-15D

| ab Name: | H2M LABS INC | Contract: |
|----------|--------------|-----------|

Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS120

Matrix: (soil/water) WATER Lab Sample ID: 1105A44-001A

Sample wt/vol:  $\underline{5}$  (g/mL)  $\underline{ML}$  Lab File ID:  $\underline{1}$ E10826.D

Level: (low/med) <u>LOW</u> Date Received: <u>05/25/11</u>

% Moisture: not dec. Date Analyzed: 06/03/11

GC Column: Rxi-1MS ID: .32 (mm) Dilution Factor: 1.00

Soil Extract Volume: (µL) Soil Aliquot Volume (µL)

#### CONCENTRATION UNITS:

| CAS NO.   | COMPOUND       | (µg/L or µg/Kg) <u>UG/L</u> | Q  |
|-----------|----------------|-----------------------------|----|
| 71-43-2   | Benzene        | 1                           | υJ |
| 108-88-3  | Toluene        | 1.                          | Ü  |
| 100-41-4  | Ethylbenzene   | 1                           | υ  |
| 1330-20-7 | Xylene (total) | 1                           | U  |

### VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

HIMW-15I

| Lab Name: | H2M LABS INC | Contract: |  |
|-----------|--------------|-----------|--|
|           |              |           |  |

Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS120

Matrix: (soil/water) WATER Lab Sample ID: 1105A44-002A

Sample wt/vol:  $\underline{5}$  (g/mL)  $\underline{ML}$  Lab File ID:  $\underline{1}$  [1\E10827.D]

Level: (low/med) LOW Date Received: 05/25/11

% Moisture: not dec. Date Analyzed: 06/03/11

GC Column: Rxi-1MS ID: .32 (mm) Dilution Factor: 1.00

Soil Extract Volume: (µL) Soil Aliquot Volume (µL)

#### CONCENTRATION UNITS:

|     | CAS NO.   | COMPOUND       | (µg/L or µg/Kg) <u>UG/L</u> | Q  |
|-----|-----------|----------------|-----------------------------|----|
|     | 71-43-2   | Benzene        | 23                          | J  |
| j   | 108-88-3  | Toluene        | ì                           | U  |
| ı   | 100-41-4  | Ethylbenzene   | 1                           | Ü  |
| - 1 | 1330-20-7 | Xylene (total) | 1                           | υ↓ |

#### VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

HIMW-25

Lab Name: H2M LABS INC Contract:

Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS120

Matrix: (soil/water) WATER Lab Sample ID: 1105A44-003A

Sample wt/vol:  $\underline{5}$  (g/mL)  $\underline{ML}$  Lab File ID:  $\underline{1}\underline{10828.D}$ 

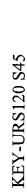
Level: (low/med) LOW Date Received: 05/25/11

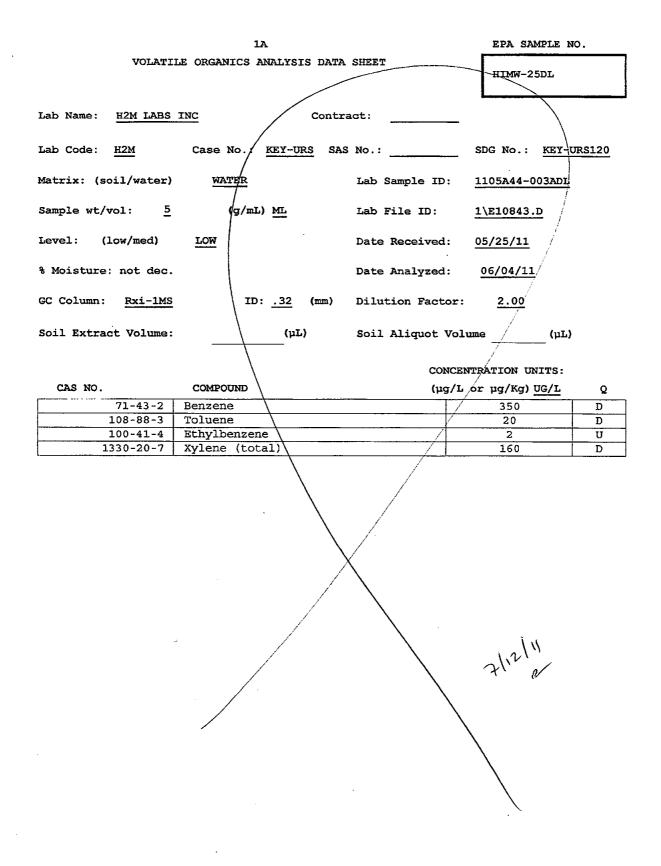
% Moisture: not dec. Date Analyzed: 06/03/11

GC Column: Rxi-1MS ID: .32 (mm) Dilution Factor: 1.00

Soil Extract Volume: (µL) Soil Aliquot Volume (µL)

CONCENTRATION UNITS:


 CAS NO.
 COMPOUND
 (µg/L or µg/Kg) UG/L
 Q


 71-43-2
 Benzene
 350 380
 #DJ

 108-88-3
 Toluene
 20
 J

 100-41-4
 Ethylbenzene
 2
 J

 1330-20-7
 Xylene (total)
 180
 J





#### VOLATILE ORGANICS ANALYSIS DATA SHEET

| EPA | SAMPLE | NO. |
|-----|--------|-----|
|     |        |     |

HIMW-24

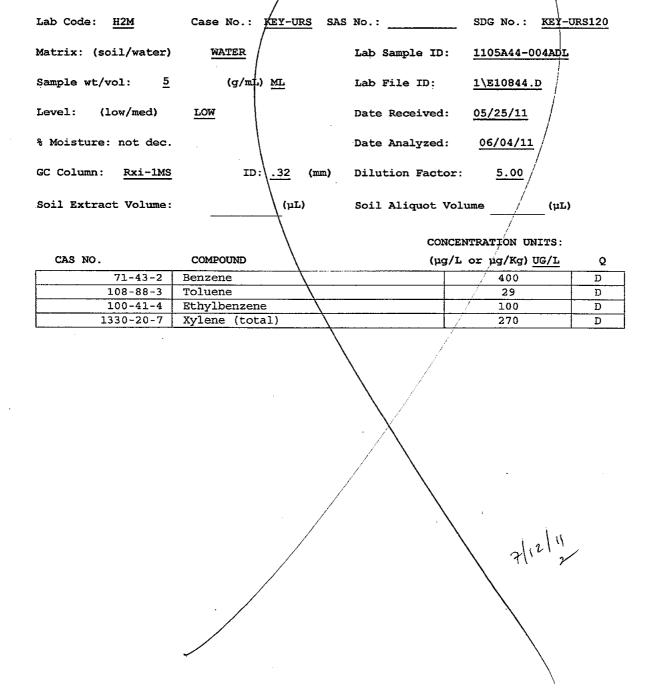
Lab Name: H2M LABS INC Contract:

Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS120

Matrix: (soil/water) WATER Lab Sample ID: 1105A44-004A

Sample wt/vol:  $\underline{5}$  (g/mL)  $\underline{ML}$  Lab File ID:  $\underline{1}$ \E10829.D

Level: (low/med) LOW Date Received: 05/25/11


% Moisture: not dec. Date Analyzed: 06/03/11

GC Column: Rxi-1MS ID: .32 (mm) Dilution Factor: 1.00

Soil Extract Volume: (µL) Soil Aliquot Volume (µL)

#### CONCENTRATION UNITS:

| CAS . | 71-43-2 Benzene 108-88-3 Toluene 100-41-4 Ethylbenzene 1330-20-7 Xylene (total) | COMPOUND       | (µg/L or µg/Kg) UG/L |      |  |
|-------|---------------------------------------------------------------------------------|----------------|----------------------|------|--|
|       | 71-43-2                                                                         | Benzene        | 470 400              | E DJ |  |
|       | 108-88-3                                                                        | Toluene        | 30                   | +    |  |
|       | 100-41-4                                                                        | Ethylbenzene   | 120                  | i    |  |
|       | 1330-20-7                                                                       | Xylene (total) | 320                  |      |  |



Contract:

1A

VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: H2M LABS INC

EPA SAMPLE NO.

HIMW-24DL

#### VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

KEY-URS120

TRIP BLANK

| Lab | Name: | H2M LABS II | NC .      | Co      | ntract:  |                                       |          |
|-----|-------|-------------|-----------|---------|----------|---------------------------------------|----------|
| Lab | Code: | <u>H2M</u>  | Case No.: | KEY-URS | SAS No.: | · · · · · · · · · · · · · · · · · · · | SDG No.: |

Matrix: (soil/water) WATER Lab Sample ID: 1105A44-005A

Sample wt/vol: 5 (g/mL) ML Lab File ID: 1\E10824.D

Level: (low/med) LOW Date Received: 05/25/11

% Moisture: not dec. Date Analyzed: 06/03/11

GC Column: Rxi-1MS ID: .32 (mm) Dilution Factor: 1.00

Soil Extract Volume: (µL) Soil Aliquot Volume \_\_\_\_\_(µL)

| CAS NO.   | COMPOUND       | (µg/L or µg/Kg) UG/L | Q |
|-----------|----------------|----------------------|---|
| 71-43-2   | Benzene        | 1                    | υ |
| 108-88-3  | Toluene        | 1                    | U |
| 100-41-4  | Ethylbenzene   | 1                    | Ü |
| 1330-20-7 | Xvlene (total) | 1                    | Ü |

#### VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

HIMW-3S

Lab Name: H2M LABS INC Contract:

Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS120

Matrix: (soil/water) WATER Lab Sample ID: 1105B49-001A

Sample wt/vol:  $\underline{5}$  (g/mL)  $\underline{ML}$  Lab File ID:  $\underline{1}$ \E10830.D

Level: (low/med) LOW Date Received: 05/27/11

% Moisture: not dec. Date Analyzed: 06/03/11

GC Column: Rxi-1MS ID: .32 (mm) Dilution Factor: 1.00

Soil Extract Volume: (µL) Soil Aliquot Volume (µL)

CONCENTRATION UNITS:

|   | CAS NO.   | COMPOUND       | (µg/L or µg/Kg) <u>UG/L</u> |     |   |
|---|-----------|----------------|-----------------------------|-----|---|
| Γ | 71-43-2   | Benzene        | 1                           | ប្ស | ٦ |
|   | 108-88-3  | Toluene        | 1                           | ן ט | П |
|   | 100-41-4  | Ethylbenzene   | 1.                          | U   | ٦ |
|   | 1330-20-7 | Xylene (total) | 1                           | Ū,  |   |

# VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

HIMW-5D

Lab Name: H2M LABS INC Contract:

Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS120

Matrix: (soil/water) WATER Lab Sample ID: 1105B49-002A

Sample wt/vol:  $\underline{5}$  (g/mL)  $\underline{ML}$  Lab File ID:  $\underline{1}$ \E10831.D

Level: (low/med) LOW Date Received: 05/27/11

% Moisture: not dec. Date Analyzed: 06/03/11

GC Column: Rxi-1MS ID: .32 (mm) Dilution Factor: 1.00

Soil Extract Volume: (µL) Soil Aliquot Volume (µL)

#### CONCENTRATION UNITS:

| CAS | NO.       | COMPOUND       | (µg/L or µg/Kg) <u>UG/L</u> | Q |           |
|-----|-----------|----------------|-----------------------------|---|-----------|
|     | 71-43-2   | Benzene        | 2                           | 7 | ٦         |
|     | 108-88-3  | Toluene        | 1                           | 1 | ٦         |
|     | 100-41-4  | Ethylbenzene   | 1                           | Ū | $\Box$    |
|     | 1330-20-7 | Xylene (total) | 130                         |   | $\exists$ |

7[12]4

#### VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

HIMW-5I

Lab Name: H2M LABS INC

Contract:

Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS120

Matrix: (soil/water) WATER

Lab Sample ID: 1105B49-003A

Sample wt/vol:  $\underline{5}$  (g/mL)  $\underline{\text{ML}}$  Lab File ID:  $\underline{1}$  [10832.D]

Level: (low/med) LOW

Date Received: 05/27/11

% Moisture: not dec.

Date Analyzed: 06/03/11

GC Column: Rxi-1MS ID: 32 (mm) Dilution Factor: 1.00

Soil Extract Volume:

(μL) Soil Aliquot Volume (μL)

#### CONCENTRATION UNITS:

| CAS NO.   | COMPOUND       | (µg/L or µg/Kg) <u>UG/L</u> | Q |
|-----------|----------------|-----------------------------|---|
| 71-43-2   | Benzene        | 3                           | 3 |
| 108-88-3  | Toluene        | 1                           | 1 |
| 100-41-4  | Ethylbenzene   | 2                           |   |
| 1330-20-7 | Xylene (total) | 140                         |   |

# VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

HIMW-14D

| Lab  | Name:    | H2M   | LABS | INC |  |
|------|----------|-------|------|-----|--|
| July | ******** | ***** |      | ~~~ |  |

Contract:

Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS120

Matrix: (soil/water) WATER

Lab Sample ID: <u>1105B49-004A</u>

Sample wt/vol:  $\underline{5}$  (g/mL)  $\underline{ML}$  Lab File ID:  $\underline{1}$  [10833.D]

Level: (low/med) LOW

Date Received: 05/27/11

% Moisture: not dec.

Date Analyzed: 06/03/11

GC Column: Rxi-1MS ID: .32 (mm) Dilution Factor: 1.00

Soil Extract Volume:

(μL) Soil Aliquot Volume (μL)

#### CONCENTRATION UNITS:

| CAS NO.   | COMPOUND       | (µg/L or µg/Kg) UG/L | Q  |   |
|-----------|----------------|----------------------|----|---|
| 71-43-2   | Benzene        | 1                    | បៗ | П |
| 108-88-3  | Toluene        | 1                    | υ, |   |
| 100-41-4  | Ethylbenzene   | 1                    | Ü  |   |
| 1330-20-7 | Xylene (total) | 1                    | U  | - |

### VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

HIMW-14I

| Lab Name: H2M LABS   | INC               | ontract:            |                     |
|----------------------|-------------------|---------------------|---------------------|
| Lab Code: H2M        | Case No.: KEY-URS | SAS No.:            | SDG No.: KEY-URS120 |
| Matrix: (soil/water) | WATER             | Lab Sample ID:      | 1105B49-005A        |
| Sample wt/vol: 5     | (g/mL) ML         | Lab File ID:        | 1\E10834.D          |
| Level: (low/med)     | LOW               | Date Received:      | 05/27/11            |
| % Moisture: not dec. |                   | Date Analyzed:      | 06/03/11            |
| GC Column: Rxi-1MS   | ID: <u>.32</u> (m | m) Dilution Factor: | 1.00                |
| Soil Extract Volume: | (nL)              | Soil Alimot Volu    | me (nT.)            |

#### CONCENTRATION UNITS:

| CAS NO.   | COMPOUND       | (µg/L or µg/Kg) <u>UG/L</u> | Q |
|-----------|----------------|-----------------------------|---|
| 71-43-2   | Benzene        | 24                          |   |
| 108-88-3  | Toluene        | 1                           | U |
| 100-41-4  | Ethylbenzene   | 3                           |   |
| 1330-20-7 | Xylene (total) | 2                           |   |

Alaly

#### VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

HIMW-22

| rap | Name: | H2M LABS I | NC        | , Co    | ntract:  |              |            |
|-----|-------|------------|-----------|---------|----------|--------------|------------|
| Lab |       | н2м        | Case No.: | KEY-URS | SAS No.: | <br>SDG No.: | KEY-URS120 |

Matrix: (soil/water) WATER Lab Sample ID: 1105B49-006A

Sample wt/vol: 5 (g/mL) ML Lab File ID: 1\E10845.D

Level: (low/med) LOW Date Received: 05/27/11

% Moisture: not dec. Date Analyzed: 06/04/11

GC Column: Rxi-1MS ID: .32 (mm) Dilution Factor: 1.00

Soil Extract Volume: (µL) Soil Aliquot Volume (µL)

#### CONCENTRATION UNITS:

| CAS NO.   | COMPOUND       | (µg/L or µg/Kg) UG/L | Q   |  |
|-----------|----------------|----------------------|-----|--|
| 71-43-2   | Benzene        | 1                    | TU  |  |
| 108-88-3  | Toluene        | 1                    | υı  |  |
| 100-41-4  | Ethylbenzene   | 1                    | ט   |  |
| 1330-20-7 | Xylene (total) | 1                    | U J |  |

#### VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

HIMW-23

Lab Name: H2M LABS INC Contract:

Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS120

Matrix: (soil/water) WATER Lab Sample ID: 1105B49-007A

Sample wt/vol:  $\underline{5}$  (g/mL)  $\underline{\text{ML}}$  Lab File ID:  $\underline{1}$ \E10846.D

Level: (low/med) LOW Date Received: 05/27/11

% Moisture: not dec. Date Analyzed: 06/04/11

GC Column: Rxi-1MS ID: .32 (mm) Dilution Factor: 1.00

Soil Extract Volume: (µL) Soil Aliquot Volume (µL)

#### CONCENTRATION UNITS:

| CAS NO.   | COMPOUND       | (µg/L or µg/Kg) <u>UG/L</u> |    |
|-----------|----------------|-----------------------------|----|
| 71-43-2   | Benzene        | 14                          | T  |
| 108-88-3  | Toluene        | 1                           | υı |
| 100-41-4  | Ethylbenzene   | 27                          |    |
| 1330-20-7 | Xylene (total) | 2                           | -  |

#### VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

DUP11 0526

| Lab Name:   | H2M LABS II   | <u>NC</u> | Co          | ontract: |            |           |            |
|-------------|---------------|-----------|-------------|----------|------------|-----------|------------|
| Lab Code:   | н2м           | Case No.: | KEY-URS     | SAS No.: |            | SDG No.:  | KEY-URS120 |
| Matrix: (so | oil/water)    | WATER     |             | Lab      | Sample ID: | 1105B49-0 | 08A        |
| Sample wt/v | 701: <u>5</u> | (g/mL     | ) <u>MT</u> | Lab      | File ID:   | 1\E10847. | <u>D</u>   |

Level: (low/med) LOW Date Received: 05/27/11

% Moisture: not dec. Date Analyzed: 06/04/11

GC Column: Rxi-1MS ID: .32 (mm) Dilution Factor: 1.00

Soil Extract Volume: (µL) Soil Aliquot Volume (µL)

#### CONCENTRATION UNITS:

|   | CAS NO.   | COMPOUND       | (hg/r or hg/kg) UG/r | Q |   |
|---|-----------|----------------|----------------------|---|---|
|   | 71-43-2   | Benzene        | 24                   | 3 | ٦ |
|   | 108-88-3  | Toluene        | 1                    | U |   |
| ļ | 100-41-4  | Ethylbenzene   | 3                    |   | 7 |
|   | 1330-20-7 | Xylene (total) | 2                    | 1 | 7 |

7/12/4

OLM04.2

### VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

TRIP BLANK

| Lab Name:   | H2M LABS 1    | INC              | Contract:     | <del></del>              |            |
|-------------|---------------|------------------|---------------|--------------------------|------------|
| Lab Code:   | нам           | Case No.: KEY-UR | S SAS No.:    | SDG No.:                 | KEY-URS120 |
| Matrix: (so | oil/water)    | WATER            | Lab Sam       | ple ID: <u>1105B49-0</u> | 09A        |
| Sample wt/v | rol: <u>5</u> | (g/mL) <u>ML</u> | Lab Fil       | e ID: <u>1\E10848</u> .  | D          |
| Level: (1   | low/med)      | LOW              | Date Re       | ceived: <u>05/27/11</u>  |            |
| % Moisture: | not dec.      |                  | Date An       | alyzed: <u>06/04/11</u>  |            |
| GC Column:  | Rxi-1MS       | ID: <u>.32</u>   | (mm) Dilution | n Factor: 1.00           |            |
| a-is mutus  |               | (1-T \           | 0-41 23       |                          | (T.)       |

#### CONCENTRATION UNITS:

|           |                | CONCENTRATION UNITS. |    |  |
|-----------|----------------|----------------------|----|--|
| CAS NO.   | COMPOUND       | (µg/L or µg/Kg) UG/L | Q  |  |
| 71-43-2   | Benzene        | 1. 1.                | U  |  |
| 108-88-3  | Toluene        | 1                    | U  |  |
| 100-41-4  | Ethylbenzene   | 1                    | Ū  |  |
| 1330-20-7 | Xvlene (total) | 3                    | 13 |  |

OLM04.2

#### VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

HIMW-3D

Lab Name: H2M LABS INC Contract:

Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS120

Matrix: (soil/water) WATER Lab Sample ID: 1105B86-001A

Sample wt/vol:  $\underline{5}$  (g/mL)  $\underline{\text{ML}}$  Lab File ID:  $\underline{1}$  [1/E10850.D]

Level: (low/med)  $\underline{LOW}$  Date Received:  $\underline{05/31/11}$ 

% Moisture: not dec. Date Analyzed: 06/04/11

GC Column: Rxi-1MS ID: .32 (mm) Dilution Factor: 1.00

Soil Extract Volume: (µL) Soil Aliquot Volume (µL)

| CAS NO. | COMPOUND          | (µg/L or µg/Kg) <u>UG/L</u> | Q |
|---------|-------------------|-----------------------------|---|
| 71-43   | -2 Benzene        | 1                           | Ü |
| 108-88  | -3 Toluene        | 1                           | U |
| 100-41  | -4 Ethylbenzene   | 1                           | U |
| 1330-20 | -7 Xylene (total) | 1                           | U |

#### VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

HIMW-3I

Lab Name: H2M LABS INC

Contract:

Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS120

Matrix: (soil/water) WATER

Lab Sample ID: 1105B86-002A

Sample wt/vol:  $\underline{5}$  (g/mL)  $\underline{ML}$  Lab File ID:  $\underline{1}$  (E10851.D

Level: (low/med) LOW

1330-20-7 | Xylene (total)

Date Received: 05/31/11

% Moisture: not dec.

Date Analyzed: 06/04/11

GC Column: Rxi-1MS ID: .32 (mm) Dilution Factor: 1.00

Soil Extract Volume:

(µL) Soil Aliquot Volume (µL)

|   | CAS NO.  | COMPOUND     | (µg/L or µg/Kg) UG/L | Q |
|---|----------|--------------|----------------------|---|
| ſ | 71-43-2  | Benzene      | 1                    | U |
| Ì | 108-88-3 | Toluene      | 1                    | บ |
| Ì | 100-41-4 | Ethvlbenzene | 1                    | σ |

#### VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

HIMW-12I

| Lab Name:   | H2M LABS I    | <u>nc</u> c       | ontract:   |             | •                   |
|-------------|---------------|-------------------|------------|-------------|---------------------|
| Lab Code:   | н2м           | Case No.: KEY-URS | SAS No.: _ |             | SDG No.: KEY-URS120 |
| Matrix: (so | il/water)     | WATER             | Lab Sa     | mple ID:    | 1105B86-003A        |
| Sample wt/v | rol: <u>5</u> | (g/mL) <u>ML</u>  | Lab Fi     | le ID:      | 1\E10852.D          |
| Level: (1   | .ow/med)      | FOM               | Date R     | eceived:    | 05/31/11            |
| % Moisture: | not dec.      |                   | Date A     | nalyzed:    | 06/04/11            |
| GC Column:  | Rxi-1MS       | ID: <u>.32</u> (n | am) Diluti | on Factor:  | 1.00                |
| Soil Extrac | t Volume:     | (hr)              | Soil A     | liquot Volu | me(µL)              |

| CAS NO.   | COMPOUND       | (µg/L or µg/Kg) <u>UG/L</u> | Q |
|-----------|----------------|-----------------------------|---|
| 71-43-2   | Benzene        | 54                          |   |
| 108-88-3  | Toluene        | 1                           | U |
| 100-41-4  | Ethylbenzene   | 3                           |   |
| 1330-20-7 | Xvlene (total) | 7                           |   |

#### VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

HIMW-12S

| Lab Name:   | H2M LABS IN  | <u>ic</u>   | Contrac     | ct:               |                     |
|-------------|--------------|-------------|-------------|-------------------|---------------------|
| Lab Code:   | н2м          | Case No.: K | TEY-URS SAS | No.:              | SDG No.: KEY-URS120 |
| Matrix: (so | il/water)    | WATER       |             | Lab Sample ID:    | 1105B86-004A        |
| Sample wt/v | ol: <u>5</u> | (g/mL)      | ML          | Lab File ID:      | 1\E10853.D          |
| Level: (1   | ow/med)      | TOM         |             | Date Received:    | 05/31/11            |
| % Moisture: | not dec.     |             |             | Date Analyzed:    | 06/04/11            |
| GC Column:  | Rxi-1MS      | ID:         | .32 (mm)    | Dilution Factor:  | 1.00                |
| Soil Extrac | t Volume:    | ~~~         | (pL)        | Soil Aliquot Volu | me(μL)              |

| CAS NO.   | COMPOUND       | (µg/L or µg/Kg) <u>UG/L</u> | Q  |
|-----------|----------------|-----------------------------|----|
| 71-43-2   | Benzene        | 1                           | U  |
| 108-88-3  | Toluene        | 1                           | Ū  |
| 100-41-4  | Ethylbenzene   | 1                           | U  |
| 1330-20-7 | Xylene (total) | 7                           | II |

#### VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

DUP11 0531

| Lab Name:   | H2M LABS IN  | <u>IC</u> | Contrac     | ct:               |                     |
|-------------|--------------|-----------|-------------|-------------------|---------------------|
| Lab Code:   | н2м          | Case No.: | KEY-URS SAS | No.:              | SDG No.: KEY-URS120 |
| Matrix: (so | il/water)    | WATER     |             | Lab Sample ID:    | 1105B86-005A        |
| Sample wt/v | ol: <u>5</u> | (g/mL)    | <u>ML</u>   | Lab File ID:      | 1\E10854.D          |
| Level: (1   | ow/med)      | TOM       |             | Date Received:    | 05/31/11            |
| % Moisture: | not dec.     |           |             | Date Analyzed:    | 06/04/11            |
| GC Column:  | Rxi-1MS      | ID:       | .32 (mm)    | Dilution Factor:  | 1.00                |
| Soil Extrac | t Volume:    |           | (pL)        | Soil Aliquot Volu | me (µL)             |

#### CONCENTRATION UNITS:

|   | CAS NO.   | COMPOUND       | (hg/r or hg/kg) ng/r | Q  |
|---|-----------|----------------|----------------------|----|
| Γ | 71-43-2   | Benzene        | 1                    | บ  |
| r | 108-88-3  | Toluene        | 1                    | U  |
| Γ | 100-41-4  | Ethylbenzene   | 1                    | U  |
| ı | 1220-20-7 | Yulene (total) | 1                    | TT |

OLM04.2

### VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

TRIP BLANK

| Lab Name:  | H2M LABS I    | NC C              | Contract:      |                     |
|------------|---------------|-------------------|----------------|---------------------|
| Lab Code:  | н2м           | Case No.: KEY-URS | SAS No.:       | SDG No.: KEY-URS120 |
| Matrix: (s | oil/water)    | WATER             | Lab Sample ID: | 1105B86-006A        |
| Sample wt/ | vol: <u>5</u> | (g/mL) ML         | Lab File ID:   | 1\E10849.D          |

Level: (low/med) LOW Date Received: 05/31/11

% Moisture: not dec. Date Analyzed: 06/04/11

GC Column: Rxi-1MS ID: .32 (mm) Dilution Factor: 1.00

Soil Extract Volume: (µL) Soil Aliquot Volume (µL)

#### CONCENTRATION UNITS:

| CAS NO.   | COMPOUND       | (µg/L or µg/Kg) UG/L | Q  |
|-----------|----------------|----------------------|----|
| 71-43-2   | Benzene        | 1                    | U  |
| 108-88-3  | Toluene        | 1                    | Ū  |
| 100-41-4  | Ethylbenzene   | 1                    | U  |
| 1330-20-1 | Xvlene (total) | 1                    | TT |

OLM04.2

HIMW-13D

Lab Name: H2M LABS INC

Contract: \_\_\_\_

Lab Code: H2M

Case No.: KEY-URS SAS No.:

SDG No.: KEY-URS120

Matrix: (soil/water) WATER

Lab Sample ID: 1105963-001B

Sample wt/vol:  $\underline{1000}$  (g/mL)  $\underline{ml}$  Lab File ID:  $\underline{A \setminus C60183.D}$ 

Level: (low/med)

<u>LOW</u>

Date Received: 05/24/11

% Moisture: Decanted: (Y/N)  $\underline{N}$  Date Extracted:  $\underline{05/27/11}$ 

Concentrated Extract Volume: 1000 (µL)

Date Analyzed:

06/03/11

Dilution Factor: 1.00

Injection Volume:  $\underline{2}$  ( $\mu$ L)

Extraction: (Type) SEPF

GPC Cleanup: (Y/N)  $\underline{N}$  pH: \_\_\_\_

| COMPOUND               | (μg/L or μg/Kg) <u>UG/L</u>                                                                                                                                                                                                                                | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Naphthalene            | 10                                                                                                                                                                                                                                                         | ប                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2-Methylnaphthalene    | 10                                                                                                                                                                                                                                                         | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Acenaphthylene         | 12                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Acenaphthene           | 5                                                                                                                                                                                                                                                          | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Fluorene               | 10                                                                                                                                                                                                                                                         | บ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Phenanthrene           | 10                                                                                                                                                                                                                                                         | ַ ט                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Anthracene             | 10                                                                                                                                                                                                                                                         | Ü                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Fluoranthene           | 10                                                                                                                                                                                                                                                         | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Pyrene                 | 10                                                                                                                                                                                                                                                         | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Benzo(a)anthracene     | 10                                                                                                                                                                                                                                                         | υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Chrysene               | 10                                                                                                                                                                                                                                                         | บ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Benzo(b) fluoranthene  | 10                                                                                                                                                                                                                                                         | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Benzo(k) fluoranthene  | 10                                                                                                                                                                                                                                                         | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Benzo(a)pyrene         | 10                                                                                                                                                                                                                                                         | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Indeno(1,2,3-cd)pyrene | 10                                                                                                                                                                                                                                                         | บ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Dibenzo(a,h)anthracene | 10                                                                                                                                                                                                                                                         | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Benzo(g,h,i)perylene   | 10                                                                                                                                                                                                                                                         | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                        | Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene  Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Indeno(1,2,3-cd) pyrene Dibenzo(a,h) anthracene | Naphthalene       10         2-Methylnaphthalene       10         Acenaphthylene       12         Acenaphthene       5         Fluorene       10         Phenanthrene       10         Anthracene       10         Fluoranthene       10         Pyrene       10         Benzo(a) anthracene       10         Chrysene       10         Benzo(b) fluoranthene       10         Benzo(k) fluoranthene       10         Benzo(a) pyrene       10         Indeno(1,2,3-cd) pyrene       10         Dibenzo(a,h) anthracene       10 |

<sup>(1)</sup> Cannot be separated from Diphenylamine

HIMW-13I

Contract: \_\_\_\_\_ Lab Name: H2M LABS INC

Lab Code: H2M

Case No.: KEY-URS SAS No.: SDG No.: KEY-URS120

Matrix: (soil/water) WATER

Lab Sample ID: <u>1105963-002B</u>

Sample wt/vol:  $\underline{1000}$  (g/mL)  $\underline{\text{ml}}$  Lab File ID:  $\underline{\text{A}\text{C60184.D}}$ 

Level: (low/med) <u>LOW</u>

Date Received:

05/24/11

Date Extracted: 05/27/11

% Moisture: Decanted: (Y/N)  $\underline{N}$ 

Concentrated Extract Volume: 1000 (µL)

Date Analyzed:

06/03/11

Injection Volume:  $\underline{2}$  ( $\mu L$ )

Dilution Factor: 1.00

GPC Cleanup: (Y/N) N pH: \_\_\_\_

Extraction: (Type) SEPF

#### CONCENTRATION UNITS:

| CAS NO.  | COMPOUND               | (μg/L or μg/Kg) <u>UG/L</u> | Q |
|----------|------------------------|-----------------------------|---|
| 91-20-3  | Naphthalene            | 10                          | U |
| 91-57-6  | 2-Methylnaphthalene    | 10                          | U |
| 208-96-8 | Acenaphthylene         | 45                          |   |
| 83-32-9  | Acenaphthene           | 6                           | J |
| 86-73-7  | Fluorene               | 8                           | J |
| 85-01-8  | Phenanthrene           | 7                           | J |
| 120-12-7 | Anthracene             | 1                           | J |
| 206-44-0 | Fluoranthene           | 10                          | U |
| 129-00-0 | Pyrene                 | 10                          | U |
| 56-55-3  | Benzo(a)anthracene     | 10                          | U |
| 218-01-9 | Chrysene               | 10                          | U |
| 205-99-2 | Benzo(b) fluoranthene  | 10                          | U |
| 207-08-9 | Benzo(k) fluoranthene  | 10                          | ש |
| 50-32-8  | Benzo(a)pyrene         | 10                          | U |
| 193-39-5 | Indeno(1,2,3-cd)pyrene | 10                          | U |
| 53-70-3  | Dibenzo(a,h)anthracene | 1.0                         | υ |
| 191-24-2 | Benzo(q,h,i)perylene   | 10                          | Ū |

HIMW-13S

Contract: Lab Name: H2M LABS INC

Case No.: KEY-URS SAS No.: Lab Code: H2M

SDG No.: KEY-URS120

Matrix: (soil/water) WATER

Lab Sample ID:

1105963-003B

Sample wt/vol: 1000

(g/mL) <u>ml</u>

Lab File ID:

A\C60188.D

Level: (low/med)

Date Received: 05/24/11

% Moisture:

Decanted: (Y/N) N

LOW

Date Extracted: 05/27/11

Concentrated Extract Volume: 1000 (µL)

Date Analyzed: 06/03/11

Injection Volume:  $\underline{2}$  ( $\mu$ L)

Dilution Factor: 1.00

GPC Cleanup: (Y/N) N pH: \_\_\_\_ Extraction: (Type) SEPF

| CAS NO.  | COMPOUND               | ( $\mu$ g/L or $\mu$ g/Kg) $\underline{\text{UG/L}}$ | Q |
|----------|------------------------|------------------------------------------------------|---|
| 91-20-3  | Naphthalene            | 10                                                   | U |
| 91-57-6  | 2-Methylnaphthalene    | 10                                                   | U |
| 208-96-8 | Acenaphthylene         | 10                                                   | Ū |
| 83-32-9  | Acenaphthene           | 1.0                                                  | U |
| 86-73-7  | Fluorene               | 10                                                   | บ |
| 85-01-8  | Phenanthrene           | 10                                                   | ד |
| 120-12-7 | Anthracene             | 10                                                   | บ |
| 206-44-0 | Fluoranthene           | 10                                                   | Ū |
| 129-00-0 | Pyrene                 | 10                                                   | U |
| 56-55-3  | Benzo(a)anthracene     | 10                                                   | U |
| 218-01-9 | Chrysene               | 10                                                   | Ū |
| 205-99-2 | Benzo(b)fluoranthene   | 10                                                   | Ū |
| 207-08-9 | Benzo(k)fluoranthene   | 10                                                   | U |
| 50-32-8  | Benzo(a)pyrene         | 1.0                                                  | U |
| 193-39-5 | Indeno(1,2,3-cd)pyrene | 10                                                   | ΰ |
| 53-70-3  | Dibenzo(a,h)anthracene | 10                                                   | U |
| 191-24-2 | Benzo(g,h,i)perylene   | 10                                                   | Ū |

<sup>(1)</sup> Cannot be separated from Diphenylamine

HIMW-15D

Contract: \_\_\_\_\_ Lab Name: H2M LABS INC

Case No.: KEY-URS SAS No.: Lab Code: H2M

SDG No.: KEY-URS120

Matrix: (soil/water) WATER

Lab Sample ID:

1105A44-001B

Sample wt/vol:

1000

Lab File ID: (g/mL) <u>ml</u>

A\C60189.D

Level: (low/med)

Date Received:

05/25/11

% Moisture:

Decanted: (Y/N) N

<u>rom</u>

Date Extracted: 05/27/11

Date Analyzed: 06/03/11

Injection Volume:  $\underline{2}$  ( $\mu L$ )

Concentrated Extract Volume: 1000 (µL)

Dilution Factor: 1.00

GPC Cleanup: (Y/N) N pH: \_\_\_\_

Extraction: (Type) SEPF

### CONCENTRATION UNITS:

| CAS NO.  | COMPOUND               | ( $\mu$ g/L or $\mu$ g/Kg) <u>UG/L</u> | Q   |
|----------|------------------------|----------------------------------------|-----|
| 91-20-3  | Naphthalene            | 10                                     | υJ  |
| 91-57-6  | 2-Methylnaphthalene    | 10                                     | ט   |
| 208-96-8 | Acenaphthylene         | 10                                     | ָ ט |
| 83-32-9  | Acenaphthene           | 10                                     | U   |
| 86-73-7  | Fluorene               | 10                                     | Ū   |
| 85-01-8  | Phenanthrene           | 10                                     | Ū   |
| 120-12-7 | Anthracene             | 10                                     | ט   |
| 206-44-0 | Fluoranthene           | 10                                     | U   |
| 129-00-0 | Pyrene                 | 10                                     | U   |
| 56-55-3  | Benzo(a) anthracene    | 10                                     | U   |
| 218-01-9 | Chrysene               | 10                                     | U   |
| 205-99-2 | Benzo(b) fluoranthene  | 10                                     | U   |
| 207-08-9 | Benzo(k) fluoranthene  | 10                                     | U   |
| 50-32-8  | Benzo(a)pyrene         | 10                                     | ט   |
| 193-39-5 | Indeno(1,2,3-cd)pyrene | 10                                     | ט   |
| 53-70-3  | Dibenzo(a,h)anthracene | 10                                     | U   |
| 191-24-2 | Benzo(g,h,i)perylene   | 10                                     | ָ ט |

HIMW-15I

Contract: \_\_\_\_ Lab Name: H2M LABS INC

Lab Code: H2M

Case No.: KEY-URS SAS No.:

SDG No.: KEY-URS120

Matrix: (soil/water) WATER

Lab Sample ID:

1105A44-002B

Sample wt/vol:

1000

(g/mL) <u>ml</u>

Lab File ID:

A\C60190.D

Level: (low/med)

LOW

Date Received:

05/25/11

% Moisture:

Decanted: (Y/N) N

Date Extracted: 05/27/11

Concentrated Extract Volume: 1000 (µL)

Date Analyzed: 06/03/11

Injection Volume:

2 (μL)

Dilution Factor: 1.00

GPC Cleanup: (Y/N) N pH: \_\_\_\_

Extraction: (Type) SEPF

#### CONCENTRATION UNITS:

| CAS NO.  | COMPOUND              | (μg/L or μg/Kg) <u>UG/L</u> | Q   |
|----------|-----------------------|-----------------------------|-----|
| 91-20-3  | Naphthalene           | 10                          | υ ( |
| 91-57-6  |                       | 10                          | บ   |
| 208-96-8 | Acenaphthylene        | 23                          |     |
| 83-32-9  | Acenaphthene          | 5                           | 7   |
| 86-73-7  | Fluorene              | 10                          | U   |
| 85-01-8  | Phenanthrene          | 3                           | 75/ |
| 120-12-7 | Anthracene            | 10                          | Ū   |
| 206-44-0 | Fluoranthene          | 10                          | U   |
| 129-00-0 | Pyrene                | 10                          | U   |
| 56-55-3  |                       | 10                          | U   |
| 218-01-9 | Chrysene              | 10                          | U   |
| 205-99-2 | Benzo(b) fluoranthene | 10                          | U   |
| 207-08-9 | Benzo(k) fluoranthene | 10                          | ש   |
| 50-32-8  |                       | 10                          | U   |
| 193-39-5 |                       | 10                          | U   |
| 53-70-3  |                       | 10                          | U   |
| 191-24-2 |                       | 10                          | U   |

EPA SAMPLE NO.

HIMW-25

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: H2M LABS INC Contract:

SDG No.: KEY-URS120 Case No.: KEY-URS SAS No.: Lab Code: H2M

1105A44-003B Lab Sample ID: Matrix: (soil/water) WATER

Lab File ID: A\C60191.D (g/mL) <u>ml</u> Sample wt/vol: 1000

Date Received: 05/25/11 LOW Level: (low/med)

Date Extracted: 05/27/11 Decanted: (Y/N) N % Moisture:

Date Analyzed: 06/03/11 Concentrated Extract Volume: 1000 ( $\mu$ L)

Injection Volume:  $\underline{2}$  ( $\mu$ L) Dilution Factor: 1.00 Extraction: (Type) SEPF

CONCENTRATION UNITS:

(μg/L or μg/Kg) UG/L Q CAS NO COMPOUND

| CAS NO.  | COMPOUND               | \psi = psisi <u></u> | ~    |
|----------|------------------------|----------------------|------|
| 91-20-3  | Naphthalene            | 280 530              | K DJ |
| 91-57-6  | 2-Methylnaphthalene    | 9                    | J    |
| 208-96-8 | Acenaphthylene         | 26                   | J    |
| 83-32-9  | Acenaphthene           | 2                    | J    |
| 86-73-7  | Fluorene               | 3                    | J    |
| 85-01-8  | Phenanthrene           | 3                    | J    |
| 120-12-7 | Anthracene             | 10                   | uЈ   |
| 206-44-0 | Fluoranthene           | 10                   | υį   |
| 129-00-0 | Pyrene                 | 10                   | U    |
| 56-55-3  | Benzo(a)anthracene     | 10                   | ט    |
| 218-01-9 | Chrysene               | 10                   | U    |
| 205-99-2 | Benzo(b) fluoranthene  | 10                   | ŭ    |
| 207-08-9 | Benzo(k)fluoranthene   | 10                   | U    |
| 50-32-8  | Benzo(a)pyrene         | 10                   | U    |
| 193-39-5 | Indeno(1,2,3-cd)pyrene | 10                   | U    |
| 53-70-3  | Dibenzo(a,h)anthracene | 10                   | U    |
| 191-24-2 | Benzo(g,h,i)perylene   | 10                   | ប។   |
|          |                        |                      |      |

(1) Cannot be separated from Diphenylamine

GPC Cleanup: (Y/N) N pH: \_\_\_\_

HIMW-25DL

Contract: Lab Name: H2M LABS INC SDG No.: KEY-URS120 Case No.: KEY-URS SAS No.: Lab Code: H2M Lab Sample ID: 1105A44-003BDL Matrix: (soil/water) WATER Lab File ID: A\C60207.D Sample wt/vol: 1000 (g/mL)MLLevel: (low/med) Date Received: 05/25/11 Decanted: (Y/N) Date Extracted: 05/27/11 % Moisture: Date Analyzed: 06/06/11 Concentrated Extract Volume: 1000 (μL) Dilution Factor: 10.00  $(\mu L)$ Injection Volume: Extraction: (Type) SEPF GPC Cleanup: (Y/N) N pH: \_\_\_ CONCENTRATION UNITS: ( $\mu$ g/L or  $\mu$ g/Kg) UG/L 0 COMPOUND CAS NO. 530 D Naphthalene 91-20-3 100 IJ 91-57-6 2-Methylnaphthalene 208-96-8 34 DJ Acenaphthylene 100 U Acenaphthene 83-32-9 100 U Fluorene 86-73-7 υ 100 85-01-8 Phenanthrene 100 Ū 120-12-7 Anthracene 100 U 206-44-0 Fluoranthene 100 U 129-00-0 Pyrene U 100 56-55-3 Benzo(a) anthracène 100 U 218-01-9 Chrysene U 205-99-2 Benzo (b) fluoranthene 100 100 Ū 207-08-9 Benzo(k)fluoranthene 100 Ū 50-32-8 Benzo(a)pyrene 100 Ū Indeno(1,2,3-cd)pyrene 193-39-5 100 U 53-70-3 Dibenzo(a,h)anthracene 100 U 191-24-2 Benzo(g,h,i)perylene

#### EPA SAMPLE NO.

| SEMIVOLATILE ( | ORGANICS | ANALYSIS | DATA | SHEET |
|----------------|----------|----------|------|-------|
|----------------|----------|----------|------|-------|

| Lab Name: | H2M LABS INC | Contract: |  |
|-----------|--------------|-----------|--|
|-----------|--------------|-----------|--|

Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS120

Lab Sample ID: <u>1105A44-004B</u> Matrix: (soil/water) WATER

Lab File ID: A\C60192.D (g/mL) <u>ml</u> 1000

Sample wt/vol: Date Received: 05/25/11 LOW Level: (low/med)

Date Extracted: 05/27/11 Decanted: (Y/N) N % Moisture:

Date Analyzed: 06/03/11 Concentrated Extract Volume: 1000 (µL)

Dilution Factor: 1.00 (μ**L**) 2 Injection Volume:

Extraction: (Type) SEPF GPC Cleanup: (Y/N) N pH: \_\_\_\_

### CONCENTRATION UNITS:

| CAS NO.  | COMPOUND               | ( $\mu$ g/L or $\mu$ g/Kg) $\underline{U}$ G/L | Q    |
|----------|------------------------|------------------------------------------------|------|
| 91-20-3  | Naphthalene            | 460, 870                                       | ₹05  |
| 91-57-6  | 2-Methylnaphthalene    | 65                                             |      |
| 208-96-8 | Acenaphthylene         | 48                                             |      |
| 83-32-9  | Acenaphthene           | 17                                             |      |
| 86-73-7  | Fluorene               | 3                                              | J    |
| 85-01-8  | Phenanthrene           | 15                                             |      |
| 120-12-7 | Anthracene             | 2                                              | J    |
| 206-44-0 | Fluoranthene           | 10                                             | n T  |
| 129-00-0 | Pyrene                 | 10                                             | υį   |
| 56-55-3  | Benzo(a)anthracene     | 10                                             |      |
| 218-01-9 | Chrysene               | 10                                             | U    |
| 205-99-2 | Benzo(b) fluoranthene  | 10                                             | υ    |
| 207-08-9 | Benzo(k)fluoranthene   | 10                                             | ט    |
| 50-32-8  | Benzo(a)pyrene         | 10                                             | ע    |
| 193-39-5 | Indeno(1,2,3-cd)pyrene | 10                                             | ש    |
| 53-70-3  | Dibenzo(a,h)anthracene | 10                                             | U    |
| 191-24-2 | Benzo(q,h,i)perylene   | 10                                             | υ ∤_ |

Lab Name: H2M LABS INC

Contract

ML

SDG No.: KEY-URS120

Lab Code: H2M

Case No.: KEY-URS

(g/mL)

SAS No.: Lab Sample ID:

1105A44-004BDL

Matrix: (soil/water) WATER

1000

Lab File ID:

A\C60208.D

Sample wt/vol:

LOW

Date Received:

05/25/11

Level: (low/med)

Date Extracted: N

05/27/11

% Moisture:

Decanted: (Y/N) 1000 (μL)

Date Analyzed:

06/06/11

Injection Volume:

Concentrated Extract Volume:

(μL)

Dilution Factor:

20.00

GPC Cleanup:

pH: \_ (X/N) N

Extraction: (Type) SEPF

CONCENTRATION UNITS:

CAS NO.

COMPOUND

Benzo(a)pyrene

191-24-2 Benzo(g,h,i)perylene

Indeno(1,2,3-cd)pxrene

Dibenzo (a, h) anthradene/

(μg/L or μg/Kg) UG/L 870

200

200

200

| 91-20-3  | Naphthalene           |   | 870 | D        |
|----------|-----------------------|---|-----|----------|
| 91-57-6  | 2-Methylnaphthalene   |   | 65  | DJ       |
| 208-96-8 | Acenaphthylene        | 7 | 56  | DJ       |
| 83-32-9  | Acenaphthene          |   | 200 | Ü        |
| 86-73-7  | Fluorène              |   | 200 | U        |
| 85-01-8  | Phenanthrene          |   | 200 | U        |
| 120-12-7 | Anthracene            |   | 200 | Ü        |
| 206-44-0 | Fluoranthene          |   | 200 | U        |
| 129-00-0 | Pyrene                | / | 200 | <u> </u> |
| 56-55-3  | Benzo(a) anthracene   | / | 200 | Ŭ        |
| 218-01-9 | Chrysene              |   | 200 | U        |
| 205-99-2 | Benzo(b) fluoranthene |   | 200 | Ū        |
| 207-08-9 | Benzo(k) fluoranthene |   | 200 | U        |
| 50-32-8  | Benzo(a) pyrene       |   | 200 | Ü        |

(1) Cannot be separated from Diphenylamine

50-32-8

53-70-3

193-39-5

U

IJ

U

EPA SAMPLE NO.

HIMW-3S

| Lab | Name: | H2M LABS INC | Contract: |  |
|-----|-------|--------------|-----------|--|
|-----|-------|--------------|-----------|--|

Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS120

Matrix: (soil/water) WATER

Lab Sample ID: <u>1105B49-001B</u>

Sample wt/vol: 1000

(g/mL) <u>ml</u>

Lab File ID:

A\C60230.D

Level: (low/med)

LOW

Date Received: 05/27/11

% Moisture:

Decanted: (Y/N) N

Date Extracted: 06/01/11

Concentrated Extract Volume: 1000 ( $\mu$ L)

Date Analyzed: 06/07/11

Injection Volume:  $\underline{2}$  ( $\mu$ L)

Dilution Factor: 1.00

GPC Cleanup: (Y/N) N pH: \_\_\_\_

Extraction: (Type) CONT

#### CONCENTRATION UNITS:

| CAS NO.  | COMPOUND               | (μg/L or μg/Kg) <u>UG/L</u> | Q        |
|----------|------------------------|-----------------------------|----------|
| 91-20-3  | Naphthalene            | 10                          | υJ       |
| 91-57-6  | 2-Methylnaphthalene    | 10                          | υı       |
| 208-96-8 | Acenaphthylene         | 10                          | U        |
| 83-32-9  | Acenaphthene           | 10                          | Ü        |
| 86-73-7  | Fluorene               | 10                          | U        |
| 85-01-8  | Phenanthrene           | 10                          | U        |
| 120-12-7 | Anthracene             | 10                          | υ        |
| 206-44-0 | Fluoranthene           | 10                          | บ        |
| 129-00-0 | Pyrene                 | 10                          | U        |
| 56-55-3  | Benzo(a)anthracene     | 10                          | Ū        |
| 218-01-9 | Chrysene               | 10                          | <b>ט</b> |
| 205-99-2 | Benzo(b) fluoranthene  | 10                          | ַ ט      |
| 207-08-9 | Benzo(k)fluoranthene   | 10                          | ט        |
| 50-32-8  | Benzo(a)pyrene         | 10                          | <u> </u> |
| 193-39-5 | Indeno(1,2,3-cd)pyrene | 10                          | Ū        |
| 53-70-3  | Dibenzo(a,h)anthracene | 10                          | Ū        |
| 191-24-2 | Benzo(g,h,i)perylene   | 10                          | U        |

| EPA SAMPLE | NO. |
|------------|-----|
|------------|-----|

HIMW-5D

Lab Name: H2M LABS INC

Contract:

SDG No.: KEY-URS120

Matrix: (soil/water) WATER

Case No.: KEY-URS SAS No.: Lab Sample ID:

1105B49-002B

Sample wt/vol:

Lab Code: H2M

1000

Lab File ID: (g/mL) <u>ml</u>

A\C60231.D

Level: (low/med)

Date Received:

05/27/11

% Moisture:

Date Extracted:

06/01/11

Decanted: (Y/N)  $\underline{N}$ Concentrated Extract Volume: 1000 ( $\mu$ L)

LOW

Date Analyzed: 06/07/11

Injection Volume:

<u>2</u> (μL)

Dilution Factor: 1.00

GPC Cleanup: (Y/N) N pH: \_\_\_\_

Extraction: (Type) CONT

#### CONCENTRATION UNITS:

CAC NO

COMPOUND

( $\mu$ g/L or  $\mu$ g/Kg)  $\underline{U}$ G/L Q

| CAS NO.  | COMPOUND               | (mg/ n or mg/ ng/ <u>oo/ n</u> | **          |
|----------|------------------------|--------------------------------|-------------|
| 91-20-3  | Naphthalene            | 290 95                         | <i>ED</i> J |
| 91-57-6  | 2-Methylnaphthalene    | 50                             | J           |
| 208-96-8 | Acenaphthylene         | 16                             |             |
| 83-32-9  | Acenaphthene           | 2                              | J           |
| 86-73-7  | Fluorene               | 3                              | J           |
| 85-01-8  | Phenanthrene           | 10                             | υJ          |
| 120-12-7 | Anthracene             | 10                             | บ           |
| 206-44-0 | Fluoranthene           | 10                             | Ü           |
| 129-00-0 | Pyrene                 | 10                             | U           |
| 56-55-3  | Benzo(a) anthracene    | 10                             | U           |
| 218-01-9 | Chrysene               | 10                             | ָט          |
| 205-99-2 | Benzo(b) fluoranthene  | 10                             | υ)          |
| 207-08-9 | Benzo(k)fluoranthene   | 10                             | U           |
| 50-32-8  | Benzo(a)pyrene         | 10                             | <u>U</u>    |
| 193-39-5 | Indeno(1,2,3-cd)pyrene | 10                             | U           |
| 53-70-3  | Dibenzo(a,h)anthracene | 10                             | U           |
| 191-24-2 | Benzo(g,h,i)perylene   | 10                             | ע ∜         |

1C

### SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Case No.: KEY-URS

Lab Name: H2M LABS INC

SAS No.:

SDG No.: KEY-URS120

EPA SAMPLE NO.

HIMW-5DDL

Matrix: (soil/water) WATER

Contract:

Lab File ID:

Lab Sample ID:

1105B49-002BDL

Sample wt/vol: (low/med)

Lab Code: H2M

Date Received:

A\C60248.D

Level:

05/27/11

% Moisture:

Decanted: (Y/N)

Date Extracted:

06/01/11

Concentrated Extract Volume:

1000 (μL) Date Analyzed:

06/07/11

Injection Volume:

(µL)

Dilution Factor:

2.00

GPC Cleanup:

(Y/N) N

pH:

Extraction: (Type) CONT

CONCENTRATION UNITS: (ug/L or /ug/Kg) UG/L Q

| AS NO. | COMPOUT |
|--------|---------|
|--------|---------|

| COMPOUND               | (μg/L 01/μg/kg/ <u>06/L</u>                                                                                                                                                                                                                                | - 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Naphthalene            | / 95                                                                                                                                                                                                                                                       | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                        | 52                                                                                                                                                                                                                                                         | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                        | 17                                                                                                                                                                                                                                                         | DJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Acenaphthene           | 20                                                                                                                                                                                                                                                         | ט                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Fluorene               | 20                                                                                                                                                                                                                                                         | Ū                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Phenanthrene           | 20                                                                                                                                                                                                                                                         | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Anthracene /           | 20                                                                                                                                                                                                                                                         | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Fluoranthene           | 20                                                                                                                                                                                                                                                         | υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Pyrene /               | 20                                                                                                                                                                                                                                                         | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Benzo(a)anthracene     | 20                                                                                                                                                                                                                                                         | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Chrysene               | 20                                                                                                                                                                                                                                                         | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Benzo(b) fluoranthene  | 20                                                                                                                                                                                                                                                         | บ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Benzo(k)fluoranthene   | 20                                                                                                                                                                                                                                                         | υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Benzo(a) pyrene        | 20                                                                                                                                                                                                                                                         | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                        | 20                                                                                                                                                                                                                                                         | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                        | 20                                                                                                                                                                                                                                                         | บ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Benzo(q,h,i)perylene / | 20                                                                                                                                                                                                                                                         | ប                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                        | Naphthalene  2-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phehanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(b) fluoranthene Benzo(a) pyrene Indeno(1,2,3-cd) pyrene Dibenzo(a,b) anthracene | Naphthalene         95           2-Methylnaphthalene         52           Acenaphthylene         17           Acenaphthene         20           Fluorene         20           Phehanthrene         20           Anthracene         20           Fluoranthene         20           Pyrene         20           Benzo(a) anthracene         20           Chrysene         20           Benzo(b) fluoranthene         20           Benzo(a) pyrene         20           Indeno(1,2,3-cd) pyrene         20           Dibenzo(a,h) anthracene         20 |



EPA SAMPLE NO.

HIMW-5I

| Lab | Name: | H2M LABS INC | Contract: |  |
|-----|-------|--------------|-----------|--|
|-----|-------|--------------|-----------|--|

Lab Code: H2M

Case No.: KEY-URS

SAS No.: Lab Sample ID: SDG No.: KEY-URS120

Matrix: (soil/water) WATER

1000

(g/mL) <u>m1</u> Lab File ID:

1105B49-003B A\C60232.D

Sample wt/vol:

N

Date Received:

LOW

05/27/11

% Moisture:

Decanted: (Y/N)

Date Extracted:

06/01/11

Concentrated Extract Volume: 1000 (µL)

Date Analyzed:

06/07/11

Injection Volume:

Level: (low/med)

2 (μL) Dilution Factor: 1.00

GPC Cleanup: (Y/N) N

pH:\_\_\_\_

Extraction: (Type) CONT

### CONCENTRATION UNITS:

(μg/L or μg/Kg) UG/L COMPOUND CAS NO.

| <b></b>               | · <del>-</del>                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Naphthalene           | 920 1600                                                                                                                                                                                | B DJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                       | 380 320                                                                                                                                                                                 | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                       | 130 150                                                                                                                                                                                 | Æ ∤                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Acenaphthene          | 10                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Fluorene              | 24                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Phenanthrene          | 14                                                                                                                                                                                      | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Anthracene            | 2                                                                                                                                                                                       | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Fluoranthene          | 10                                                                                                                                                                                      | υĴ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Pyrene                | 10                                                                                                                                                                                      | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Benzo(a) anthracene   | 10                                                                                                                                                                                      | บ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Chrysene              | 10                                                                                                                                                                                      | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Benzo(b) fluoranthene | 10                                                                                                                                                                                      | Ū                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                       | 10                                                                                                                                                                                      | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                       | 10                                                                                                                                                                                      | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                       | 10                                                                                                                                                                                      | ט                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                       | 10                                                                                                                                                                                      | ט                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Benzo(g,h,i)perylene  | 10                                                                                                                                                                                      | ע√ע                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                       | Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene | 2-Methylnaphthalene       380 320         Acenaphthylene       10         Acenaphthene       10         Fluorene       24         Phenanthrene       14         Anthracene       2         Fluoranthene       10         Pyrene       10         Benzo (a) anthracene       10         Chrysene       10         Benzo (b) fluoranthene       10         Benzo (k) fluoranthene       10         Benzo (a) pyrene       10         Indeno (1, 2, 3-cd) pyrene       10         Dibenzo (a, h) anthracene       10 |

EPA SAMPLE NO. 1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET HIMW-5IDL Contract: Lab Name: H2M LABS INC SDG No. KEY-URS120 Case No.: KEY-URS SAS No.: \_\_\_ Lab Code: H2M 1105B49-003BDL Lab Sample ID: Matrix: (soil/water) WATER A\C60249.D Lab File ID: (g/mL) MLSample wt/vol: 1000 05/27/11 LOW Date Received: (low/med) Level: Date Extracted: 06/01/11 pecanted: (Y/N) N % Moisture: Date Analyzed: 06/07/11 Concentrated Extract Volume: <u>1000</u> (μL) Dilution Factor: 40.00 2  $(\mu L)$ Injection Volume: Extraction: (Type) CONT GPC Cleanup: (Y/N) N pH: \_\_\_ CONCENTRATION UNITS: (μg/L or μg/Kg) UG/L Q CAS NO. COMPOUND 1600 D 91-20-3 Naphthalene 3/20 2-Methylnaphthalene 91-57-6 /150 DJ 208-96-8 Acenaphthylene 400 83-32-9 Acenaphthene Ü 400 86-73-7 Fluorene υ 400 Phenanthrene 85-01-8 400 U Anthracene 120-12-7 U 400 206-44-0 Fluoranthene U 400 Pyrene 129-00-0 400 U 56-55-3 Benzo(a) anthracene U Chrysene 400 218-01-9 U 400 205-99-2 Benzo (b) fluoranthene Ū 400 207-08-9 Benzo(k) fluoranthene U 400 50-32-8 Benzo(a) pyrene

(1) Cannot be separated from Dipkenylamine

193-39-5

53-70-3

191-24-2

Indeno(1,2,3-cd)pyrene

Dibenzo(à, h) anthracene

Benzo(g,h,i)perylene

U

Ū

U

KEY-URS120 S78

400

400

400

#### EPA SAMPLE NO.

# SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

HIMW-14D

| Lab Name: | H2M LABS INC | Contract: | <del></del> |
|-----------|--------------|-----------|-------------|
|           |              |           |             |

Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS120

Matrix: (soil/water) WATER Lab Sample ID: 1105B49-004B

Sample wt/vol:  $\underline{1000}$  (g/mL)  $\underline{\text{ml}}$  Lab File ID:  $\underline{\text{A} \setminus \text{C60233.D}}$ 

Level: (low/med) LOW Date Received: 05/27/11

% Moisture: Decanted: (Y/N) N Date Extracted: 06/01/11

Concentrated Extract Volume: 1000 ( $\mu$ L) Date Analyzed: 06/07/11

Injection Volume:  $\underline{2}$  ( $\mu L$ ) Dilution Factor:  $\underline{1.00}$ 

GPC Cleanup: (Y/N) N pH: \_\_\_\_ Extraction: (Type) CONT

#### CONCENTRATION UNITS:

| CAS NO.  | COMPOUND               | (μg/L or μg/Kg) <u>UG/L</u> | Q   |
|----------|------------------------|-----------------------------|-----|
| 91-20-3  | Naphthalene            | 10                          | UJ  |
| 91-57-6  | 2-Methylnaphthalene    | 10                          | υj  |
| 208-96-8 | Acenaphthylene         | 10                          | ַ ט |
| 83-32-9  | Acenaphthene           | 10                          | ט   |
| 86-73-7  | Fluorene               | 10                          | Ū   |
| 85-01-8  | Phenanthrene           | 10                          | U   |
| 120-12-7 | Anthracene             | 10                          | Ü   |
| 206-44-0 | Fluoranthene           | 10                          | บ   |
| 129-00-0 | Pyrene                 | 10                          | บ   |
| 56-55-3  | Benzo(a)anthracene     | 10                          | บ   |
| 218-01-9 | Chrysene               | 10                          | U   |
| 205-99-2 | Benzo(b) fluoranthene  | 10                          | บ   |
| 207-08-9 | Benzo(k)fluoranthene   | 10                          | Ū   |
| 50-32-8  | Benzo(a)pyrene         | 10                          | Ū   |
| 193-39-5 | Indeno(1,2,3-cd)pyrene | 10                          | บ   |
| 53-70-3  | Dibenzo(a,h)anthracene | 10                          | U   |
| 191-24-2 | Benzo(g,h,i)perylene   | 10                          | ΩĄ  |

(1) Cannot be separated from Diphenylamine

7/12/11

HIMW-14I

| Lab Name: H2M LABS INC    | Contract:               |                     |
|---------------------------|-------------------------|---------------------|
| Lab Code: H2M Cas         | e No.: KEY-URS SAS No.: | SDG No.: KEY-URS120 |
| Matrix: (soil/water) WATE | Lab Sample ID:          | 1105B49-005B        |

Matrix: (soil/water) WATER Lab File ID: A\C60234.D (g/mL) <u>ml</u>

Sample wt/vol: 1000

LOW Date Received: 05/27/11 Level: (low/med)

Date Extracted: 06/01/11 Decanted: (Y/N) N % Moisture:

Date Analyzed: 06/07/11 Concentrated Extract Volume: 1000 (µL)

Dilution Factor: 1.00 Injection Volume:  $\underline{2}$  ( $\mu L$ )

Extraction: (Type) CONT GPC Cleanup: (Y/N) N pH: \_\_\_\_

### CONCENTRATION UNITS:

| CAS NO.  | COMPOUND               | ( $\mu$ g/L or $\mu$ g/Kg) $\underline{U}$ G/L | Q   |
|----------|------------------------|------------------------------------------------|-----|
| 91-20-3  | Naphthalene            | 10                                             | U . |
| 91-57-6  | 2-Methylnaphthalene    | 10                                             | U   |
| 208-96-8 | Acenaphthylene         | 17                                             |     |
| 83-32-9  | Acenaphthene           | 14                                             |     |
| 86-73-7  | Fluorene               | 6                                              | J   |
| 85-01-8  | Phenanthrene           | 5                                              | J   |
| 120-12-7 | Anthracene             | 10                                             | Ū,  |
| 206-44-0 | Fluoranthene           | 10                                             | บ   |
| 129-00-0 | Pyrene                 | 10                                             | Ų   |
| 56-55-3  | Benzo(a)anthracene     | 10                                             | U   |
| 218-01-9 | Chrysene               | 10                                             | Ü   |
| 205-99-2 | Benzo(b) fluoranthene  | 10                                             | U   |
| 207-08-9 | Benzo(k)fluoranthene   | 1.0                                            | U   |
| 50-32-8  | Benzo(a)pyrene         | 10                                             | U   |
| 193-39-5 | Indeno(1,2,3-cd)pyrene | 10                                             | ซ   |
| 53-70-3  | Dibenzo(a,h)anthracene | 1.0                                            | Ŭ   |
| 191-24-2 | Benzo(g,h,i)perylene   | 10                                             | ซ   |

### EPA SAMPLE NO.

HIMW-22

| SEMIVOLATILE C | ORGANICS | ANALYSIS | DATA | SHEET |
|----------------|----------|----------|------|-------|
|----------------|----------|----------|------|-------|

Lab Name: H2M LABS INC Contract:

Case No.: KEY-URS Lab Code: H2M

SAS No.:\_\_\_\_\_ SDG No.: KEY-URS120

Matrix: (soil/water) WATER

Lab Sample ID:

1105B49-006B

Sample wt/vol:

1000

ml (g/mL)

Lab File ID:

A\C60235.D

Level: (low/med)

Date Received:

05/27/11

% Moisture:

<u>rom</u> Decanted: (Y/N) N

Date Extracted:

06/01/11

Concentrated Extract Volume: 1000 (µL)

Date Analyzed:

06/07/11

Injection Volume:

(µL)

Dilution Factor: 1.00

GPC Cleanup: (Y/N) N

pH:\_\_\_\_

Extraction: (Type) CONT

### CONCENTRATION UNITS:

( $\mu$ g/L or  $\mu$ g/Kg)  $\underline{U}$ G/L Q COMPOUND CAS NO.

| Naphthalene            | 10                                                                                                                                                                                                                      | υJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2-Methylnaphthalene    | 10                                                                                                                                                                                                                      | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Acenaphthylene         | 10                                                                                                                                                                                                                      | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Acenaphthene           | 10                                                                                                                                                                                                                      | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Fluorene               | 10                                                                                                                                                                                                                      | Ü                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Phenanthrene           | 10                                                                                                                                                                                                                      | ן ט                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Anthracene             | 10                                                                                                                                                                                                                      | ש                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Fluoranthene           | 10                                                                                                                                                                                                                      | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Pyrene                 | 10                                                                                                                                                                                                                      | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Benzo(a)anthracene     | 1.0                                                                                                                                                                                                                     | ט                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Chrysene               | 10                                                                                                                                                                                                                      | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Benzo(b) fluoranthene  | 1.0                                                                                                                                                                                                                     | บ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Benzo(k)fluoranthene   | 10                                                                                                                                                                                                                      | ש                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Benzo(a)pyrene         | 10                                                                                                                                                                                                                      | Ū                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Indeno(1,2,3-cd)pyrene | 10                                                                                                                                                                                                                      | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Dibenzo(a,h)anthracene | 10                                                                                                                                                                                                                      | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Benzo(g,h,i)perylene   | 10                                                                                                                                                                                                                      | ΩĄ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                        | 2-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(a) pyrene Indeno(1,2,3-cd) pyrene Dibenzo(a,h) anthracene | 2-Methylnaphthalene       10         Acenaphthylene       10         Acenaphthene       10         Fluorene       10         Phenanthrene       10         Anthracene       10         Fluoranthene       10         Pyrene       10         Benzo (a) anthracene       10         Chrysene       10         Benzo (b) fluoranthene       10         Benzo (k) fluoranthene       10         Benzo (a) pyrene       10         Indeno (1, 2, 3-cd) pyrene       10         Dibenzo (a, h) anthracene       10 |

HIMW-23

| Lab Name: | H2M LABS INC | Contract: |  |
|-----------|--------------|-----------|--|
|-----------|--------------|-----------|--|

Lab Code: H2M

Case No.: KEY-URS SAS No.:

SDG No.: KEY-URS120

Matrix: (soil/water) WATER

Lab Sample ID: <u>1105B49-007B</u>

Sample wt/vol:

1000

Lab File ID: (g/mL) ml

A\C60236.D

Level: (low/med)

**LOM** 

Date Received:

05/27/11

% Moisture:

Date Extracted: 06/01/11

Decanted: (Y/N) N

Concentrated Extract Volume: 1000 (µL)

Date Analyzed:

06/07/11

Injection Volume:

(μL) 2

Dilution Factor: 1.00

GPC Cleanup: (Y/N) N

pH: \_\_\_\_

Extraction: (Type) CONT

#### CONCENTRATION UNITS:

| CAS NO.  | COMPOUND               | (μg/L or μg/Kg) <u>UG/L</u> | Q     |
|----------|------------------------|-----------------------------|-------|
| 91-20-3  | Naphthalene            | 10                          | υJ    |
| 91-57-6  | 2-Methylnaphthalene    | 10                          | ַן, ט |
| 208-96-8 | Acenaphthylene         | 6                           | J     |
| 83-32-9  | Acenaphthene           | 1                           | J     |
| 86-73-7  | Fluorene               | 2                           | J     |
| 85-01-8  | Phenanthrene           | 2                           | J     |
| 120-12-7 | Anthracene             | 10                          | υJ    |
| 206-44-0 | Fluoranthene           | 10                          | υl    |
| 129-00-0 | Pyrene                 | 10                          | ט     |
| 56-55-3  | Benzo(a) anthracene    | 10                          | ַ ט ∖ |
| 218-01-9 | Chrysene               | 10                          | ַ ט   |
| 205-99-2 | Benzo(b)fluoranthene   | 10                          | υ     |
| 207-08-9 | Benzo(k) fluoranthene  | 10                          | U     |
| 50-32-8  | Benzo(a) pyrene        | 10                          | υ     |
| 193-39-5 | Indeno(1,2,3-cd)pyrene | 10                          | ซ     |
| 53-70-3  | Dibenzo(a,h)anthracene | 10                          | บ     |
| 191-24-2 | Benzo(g,h,i)perylene   | 10                          | υţ    |

DUP11 0526

1105B49-008B

| Lab | Name: | H2M LABS INC | Contract: |  |
|-----|-------|--------------|-----------|--|
|     |       |              |           |  |

Case No.: KEY-URS SAS No.: SDG No.: KEY-URS120 Lab Code: H2M

Lab Sample ID: Matrix: (soil/water) WATER

Lab File ID: A\C60237.D Sample wt/vol: 1000 (g/mL) ml

Date Received: 05/27/11 LOW Level: (low/med)

Date Extracted: 06/01/11 Decanted: (Y/N) N % Moisture:

Date Analyzed: 06/07/11 Concentrated Extract Volume: 1000 (µL)

Injection Volume:  $\underline{2}$  ( $\mu$ L) Dilution Factor: 1.00

Extraction: (Type) CONT GPC Cleanup: (Y/N) N pH: \_\_\_\_

### CONCENTRATION UNITS:

| CAS NO.  | COMPOUND               | ( $\mu$ g/L or $\mu$ g/Kg) <u>UG/L</u> | Q        |
|----------|------------------------|----------------------------------------|----------|
| 91-20-3  | Naphthalene            | 10                                     | υJ       |
| 91-57-6  | 2-Methylnaphthalene    | 10                                     | ប្       |
| 208-96-8 | Acenaphthylene         | 14                                     |          |
| 83-32-9  | Acenaphthene           | 12                                     | J        |
| 86-73-7  | Fluorene               | 5                                      | J¨¹      |
| 85-01-8  | Phenanthrene           | 4                                      | J        |
| 120-12-7 | Anthracene             | 10                                     | ਹ ਹੈ     |
| 206-44-0 | Fluoranthene           | 10                                     | Ū,       |
| 129-00-0 | Pyrene                 | 10                                     | <b>ט</b> |
| 56-55-3  | Benzo(a)anthracene     | 10                                     | ט        |
| 218-01-9 | Chrysene               | 10                                     | ช (      |
| 205-99-2 | Benzo(b) fluoranthene  | 10                                     | U        |
| 207-08-9 | Benzo(k)fluoranthene   | 10                                     | ט        |
| 50-32-8  | Benzo(a)pyrene         | 10                                     | ט        |
| 193-39-5 | Indeno(1,2,3-cd)pyrene | 10                                     | ט        |
| 53-70-3  | Dibenzo(a,h)anthracene | 10                                     | Ū        |
| 191-24-2 | Benzo(g,h,i)perylene   | 10                                     | υŢ       |

HIMW-3D

| Lab | Name: | H2M LABS | INC | Contract: |  |
|-----|-------|----------|-----|-----------|--|
|-----|-------|----------|-----|-----------|--|

Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS120

Matrix: (soil/water) WATER Lab Sample ID: 1105B86-001B

Sample wt/vol: 1000 (g/mL) ml Lab File ID: A\C60263.D

Level: (low/med) LOW Date Received: 05/31/11

% Moisture: Decanted: (Y/N) N Date Extracted: 06/03/11

Concentrated Extract Volume: 1000 ( $\mu$ L) Date Analyzed: 06/08/11

Injection Volume:  $\underline{2}$  ( $\mu L$ ) Dilution Factor:  $\underline{1.00}$ 

GPC Cleanup: (Y/N) N pH: \_\_\_\_ Extraction: (Type) SEPF

| CAS NO.  | COMPOUND               | (μg/L or μg/Kg) <u>UG/L</u> | Q |
|----------|------------------------|-----------------------------|---|
| 91-20-3  | Naphthalene            | 10                          | U |
| 91-57-6  | 2-Methylnaphthalene    | 10                          | บ |
| 208-96-8 | Acenaphthylene         | 10                          | U |
| 83-32-9  | Acenaphthene           | 10                          | U |
| 86-73-7  | Fluorene               | 10                          | Ū |
| 85-01-8  | Phenanthrene           | 10                          | U |
| 120-12-7 | Anthracene             | 10                          | Ū |
| 206-44-0 | Fluoranthene           | 10                          | U |
| 129-00-0 | Pyrene                 | 10                          | U |
| 56-55-3  | Benzo(a) anthracene    | 10                          | υ |
| 218-01-9 | Chrysene               | 10                          | υ |
| 205-99-2 | Benzo(b) fluoranthene  | 10                          | U |
| 207-08-9 | Benzo(k) fluoranthene  | 10                          | U |
| 50-32-8  | Benzo(a)pyrene         | 10                          | ប |
| 193-39-5 | Indeno(1,2,3-cd)pyrene | 10                          | ប |
| 53-70-3  | Dibenzo(a,h)anthracene | 10                          | U |
| 191-24-2 | Benzo(g,h,i)perylene   | 10                          | U |

<sup>(1)</sup> Cannot be separated from Diphenylamine

HIMW-3I

| Lab | Name: | H2M | LABS | INC | Contract: |  |
|-----|-------|-----|------|-----|-----------|--|
|-----|-------|-----|------|-----|-----------|--|

Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS120

Lab Sample ID: 1105B86-002B Matrix: (soil/water) WATER

A\C60264.D Lab File ID:

Sample wt/vol: 1000 (g/mL) <u>ml</u> Date Received: 05/31/11

Level: (low/med) FOM

Decanted: (Y/N) N% Moisture: Concentrated Extract Volume: 1000 ( $\mu$ L) Date Analyzed: 06/08/11

Dilution Factor: 1.00 Injection Volume:  $\underline{2}$  ( $\mu$ L)

Extraction: (Type) SEPF GPC Cleanup: (Y/N) N pH: \_\_\_\_

#### CONCENTRATION UNITS:

Date Extracted: 06/03/11

| CAS NO.  | COMPOUND               | ( $\mu$ g/L or $\mu$ g/Kg) $\underline{	t UG/L}$ | Q |
|----------|------------------------|--------------------------------------------------|---|
| 91-20-3  | Naphthalene            | 10                                               | υ |
| 91-57-6  | 2-Methylnaphthalene    | 10                                               | υ |
| 208-96-8 | Acenaphthylene         | 10                                               | ט |
| 83-32-9  | Acenaphthene           | 10                                               | U |
| 86-73-7  | Fluorene               | 10                                               | U |
| 85-01-8  | Phenanthrene           | 10                                               | U |
| 120-12-7 | Anthracene             | 10                                               | Ū |
| 206-44-0 | Fluoranthene           | 10                                               | U |
| 129-00-0 | Pyrene                 | 10                                               | Ū |
| 56-55-3  | Benzo(a) anthracene    | 10                                               | U |
| 218-01-9 | Chrysene               | 10                                               | U |
| 205-99-2 | Benzo(b) fluoranthene  | 10                                               | Ų |
| 207-08-9 | Benzo(k) fluoranthene  | 10                                               | U |
| 50-32-8  | Benzo(a)pyrene         | 10                                               | U |
| 193-39-5 | Indeno(1,2,3-cd)pyrene | 10                                               | บ |
| 53-70-3  | Dibenzo(a,h)anthracene | 10                                               | υ |
| 191-24-2 | Benzo(g,h,i)perylene   | 10                                               | υ |

<sup>(1)</sup> Cannot be separated from Diphenylamine

HIMW-12I

Lab Name: H2M LABS INC Contract:

Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS120

Lab Sample ID: 1105B86-003B Matrix: (soil/water) WATER

Lab File ID: A\C60265.D Sample wt/vol: 1000 (g/mL) <u>ml</u>

Date Received: 05/31/11 Level: (low/med) LOW

Decanted: (Y/N) N Date Extracted: 06/03/11 % Moisture:

Concentrated Extract Volume: 1000 ( $\mu$ L) Date Analyzed: 06/08/11

Dilution Factor: 1.00 Injection Volume:  $\underline{2}$  ( $\mu$ L)

Extraction: (Type) SEPF GPC Cleanup: (Y/N)  $\underline{N}$  pH: \_\_\_\_

### CONCENTRATION UNITS:

|          |                        | 001(002)110112011 011011                             |   |
|----------|------------------------|------------------------------------------------------|---|
| CAS NO.  | COMPOUND               | ( $\mu$ g/L or $\mu$ g/Kg) $\underline{\text{UG/L}}$ | Q |
| 91-20-3  | Naphthalene            | 4                                                    | J |
| 91-57-6  | 2-Methylnaphthalene    | 10                                                   | Ü |
| 208-96-8 | Acenaphthylene         | 37                                                   |   |
| 83-32-9  | Acenaphthene           | 39                                                   |   |
| 86-73-7  | Fluorene               | 22                                                   |   |
| 85-01-8  | Phenanthrene           | 6                                                    | J |
| 120-12-7 | Anthracene             | 10                                                   | Ü |
| 206-44-0 | Fluoranthene           | 10                                                   | U |
| 129-00-0 | Pyrene                 | 10                                                   | Ü |
| 56-55-3  | Benzo(a)anthracene     | 10                                                   | U |
| 218-01-9 | Chrysene               | 10                                                   | บ |
| 205-99-2 | Benzo(b) fluoranthene  | 10                                                   | บ |
| 207-08-9 | Benzo(k) fluoranthene  | 1.0                                                  | U |
| 50-32-8  | Benzo(a)pyrene         | 10                                                   | U |
| 193-39-5 | Indeno(1,2,3-cd)pyrene | 10                                                   | U |
| 53-70-3  | Dibenzo(a,h)anthracene | 10                                                   | ซ |
| 191-24-2 | Benzo(g,h,i)perylene   | 10                                                   | บ |

HIMW-12S

Contract: Lab Name: H2M LABS INC

Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS120

Matrix: (soil/water) WATER

Lab Sample ID:

1105B86-004B

Sample wt/vol: 1000 (g/mL) ml

Lab File ID: A\C60266.D

Level: (low/med)

Date Received: 05/31/11

LOW

% Moisture: Decanted: (Y/N) N Date Extracted: 06/03/11

Concentrated Extract Volume: 1000 ( $\mu$ L) Date Analyzed: 06/08/11

Injection Volume:  $\underline{2}$  ( $\mu L$ )

Dilution Factor: 1.00

GPC Cleanup: (Y/N) N pH: \_\_\_\_ Extraction: (Type) SEPF

| CAS NO.  | COMPOUND               | (μg/L or μg/Kg) <u>UG/L</u> | Q |
|----------|------------------------|-----------------------------|---|
| 91-20-3  | Naphthalene            | 10                          | U |
| 91-57-6  | 2-Methylnaphthalene    | 10                          | ซ |
| 208-96-8 | Acenaphthylene         | 10                          | Ü |
| 83-32-9  | Acenaphthene           | 10                          | U |
| 86-73-7  | Fluorene               | 10                          | U |
| 85-01-8  | Phenanthrene           | 10                          | บ |
| 120-12-7 | Anthracene             | 10                          | U |
| 206-44-0 | Fluoranthene           | 10                          | U |
| 129-00-0 | Pyrene                 | 10                          | U |
| 56-55-3  | Benzo(a)anthracene     | 10                          | U |
| 218-01-9 | Chrysene               | 10                          | U |
| 205-99-2 | Benzo(b) fluoranthene  | 10                          | Ū |
| 207-08-9 | Benzo(k)fluoranthene   | 10                          | U |
| 50-32-8  | Benzo(a)pyrene         | 10                          | Ū |
| 193-39-5 | Indeno(1,2,3-cd)pyrene | 10                          | U |
| 53-70-3  | Dibenzo(a,h)anthracene | 10                          | U |
| 191-24-2 | Benzo(q,h,i)perylene   | 10                          | ซ |

<sup>(1)</sup> Cannot be separated from Diphenylamine

EPA SAMPLE NO.

DUP11 0531

Contract: Lab Name: H2M LABS INC

Lab Code: H2M

Case No.: KEY-URS SAS No.:

SDG No.: KEY-URS120

Matrix: (soil/water) WATER

Lab Sample ID:

1105B86-005B

Sample wt/vol:

1000

(g/mL) <u>ml</u>

Lab File ID:

A\C60267.D

Level: (low/med)

LOW

Date Received: 05/31/11

% Moisture:

Decanted: (Y/N) N Date Extracted: 06/03/11

Concentrated Extract Volume: 1000 (µL) Date Analyzed: 06/08/11

Injection Volume:  $\underline{2}$  ( $\mu$ L)

Dilution Factor: 1.00

GPC Cleanup: (Y/N)  $\underline{N}$  pH: \_\_\_\_

Extraction: (Type) SEPF

| CAS NO.  | COMPOUND               | ( $\mu$ g/L or $\mu$ g/Kg) <u>UG/L</u> | Q  |
|----------|------------------------|----------------------------------------|----|
| 91-20-3  | Naphthalene            | 10                                     | Ū  |
| 91-57-6  | 2-Methylnaphthalene    | 10                                     | ט  |
| 208-96-8 | Acenaphthylene         | 10                                     | U  |
| 83-32-9  | Acenaphthene           | 10                                     | ע  |
| 86-73-7  | Fluorene               | 10                                     | บ  |
| 85-01-8  | Phenanthrene           | 10                                     | U  |
| 120-12-7 | Anthracene             | 10                                     | Ū  |
| 206-44-0 | Fluoranthene           | 10                                     | U  |
| 129-00-0 | Pyrene                 | 10                                     | Ū  |
| 56-55-3  | Benzo(a) anthracene    | 10                                     | U  |
| 218-01-9 | Chrysene               | 1.0                                    | ָד |
| 205-99-2 | Benzo(b) fluoranthene  | 10                                     | U  |
| 207-08-9 | Benzo(k)fluoranthene   | 10                                     | ซ  |
| 50-32-8  | Benzo(a)pyrene         | 10                                     | ט  |
| 193-39-5 | Indeno(1,2,3-cd)pyrene | 10                                     | บ  |
| 53-70-3  | Dibenzo(a,h)anthracene | 10                                     | Ū  |
| 191-24-2 | Benzo(g,h,i)perylene   | 10                                     | Ü  |

<sup>(1)</sup> Cannot be separated from Diphenylamine

### VOLATILE ORGANICS ANALYSIS DATA SHEET

| EPA | SAMPLE | NO |
|-----|--------|----|
|     |        |    |

HIMW-5S

| Lab Name: H2M LA     | BS INC       | Contrac    | st:               |                     |
|----------------------|--------------|------------|-------------------|---------------------|
| Lab Code: <u>H2M</u> | Case No.: KE | EY-URS SAS | No.:              | SDG No.: KEY-URS126 |
| Matrix: (soil/wate   | er) WATER    |            | Lab Sample ID:    | 1106129-001A        |
| Sample wt/vol:       | 5 (g/mL) h   | <u>ar</u>  | Lab File ID:      | A\A72653.D          |
| Level: (low/med)     | LOW          |            | Date Received:    | 06/02/11            |
| % Moisture: not de   | ec.          |            | Date Analyzed:    | 06/06/11            |
| GC Column: Rtx-6     | 524 ID:      | .18 (mm)   | Dilution Factor:  | 1.00                |
| Soil Extract Volum   | me:          | (µL)       | Soil Aliquot Volu | me (µL)             |

| CAS NO.   | COMPOUND       | (µg/L or µg/Kg) <u>UG/L</u> | Q |
|-----------|----------------|-----------------------------|---|
| 71-43-2   | Benzene        | 1                           | U |
| 108-88-3  | Toluene        | 1                           | บ |
| 100-41-4  | Ethylbenzene   | 1                           | U |
| 1330-20-7 | Xvlene (total) | 1                           | U |

#### VOLATILE ORGANICS ANALYSIS DATA SHEET

| EPA  | SAMPLE | NO. |  |
|------|--------|-----|--|
| <br> |        |     |  |
|      |        |     |  |
| HTM  | 7-8D   |     |  |

| Lab Name:   | H2M LABS IN  | <u>1C</u> | Co            | ontrac | :t:               |                     |
|-------------|--------------|-----------|---------------|--------|-------------------|---------------------|
| Lab Code:   | н2м          | Case No.: | KEY-URS       | SAS 1  | No.:              | SDG No.: KEY-URS126 |
| Matrix: (so | il/water)    | WATER     |               | 1      | Lab Sample ID:    | 1106129-002A        |
| Sample wt/v | ol: <u>5</u> | (g/mL)    | ML            | 3      | Lab File ID:      | A\A72649.D          |
| Level: (1   | ow/med)      | LOW       |               | 3      | Date Received:    | 06/02/11            |
| % Moisture: | not dec.     |           |               | 1      | Date Analyzed:    | 06/06/11            |
| GC Column:  | Rtx-624      | ID:       | <u>.18</u> (m | m) 1   | Dilution Factor:  | 1.00                |
| Soil Extrac | t Volume:    |           | (µL)          | i      | Soil Aliquot Volu | me(µL)              |

| CAS NO. | COMPOUND         | (µg/L or µg/Kg) <u>UG/L</u> | Q |
|---------|------------------|-----------------------------|---|
| 71-43   | 2 Benzene        | 1                           | U |
| 108-88  | -3 Toluene       | 1                           | Ū |
| 100-41  | 4 Ethylbenzene   | 1                           | U |
| 1330-20 | 7 Xvlene (total) | 1                           | U |

HIMM-8I

| Lab Name: H2M LAB   | S INC              | Contract:             |                     |
|---------------------|--------------------|-----------------------|---------------------|
| Lab Code: H2M       | Case No.: KEY-UR   | S SAS No.:            | SDG No.: KEY-URS126 |
| Matrix: (soil/water | WATER              | Lab Sample ID:        | 1106129-003A        |
| Sample wt/vol:      | 5 (g/mL) <u>ML</u> | Lab File ID:          | A\A72650.D          |
| Level: (low/med)    | TOM                | Date Received:        | 06/02/11            |
| % Moisture: not ded | · ·                | Date Analyzed:        | 06/06/11            |
| GC Column: Rtx-62   | ID: <u>.18</u>     | (mm) Dilution Factor: | 1.00                |
| Soil Extract Volume | e: (μL)            | Soil Aliquot Volu     | ne (hr)             |

| CAS NO. | COMPOUND          | (µg/L or µg/Kg) UG/L | Q        |
|---------|-------------------|----------------------|----------|
| 71-43   | -2 Benzene        | 1                    | U        |
| 108-88  | -3 Toluene        | 1                    | U        |
| 100-41  | -4 Ethylbenzene   | 1                    | <u> </u> |
| 1330-20 | -7 Xylene (total) | 1                    | U        |

| EPA | SAMPLE | NO. |  |
|-----|--------|-----|--|
|     |        |     |  |
| HIM | 7-8S   |     |  |

| Lab Name:   | H2M LABS IN  | Cor.               | ntract:            |                     |
|-------------|--------------|--------------------|--------------------|---------------------|
| Lab Code:   | <u>н2м</u>   | Case No.: KEY-URS  | SAS No.:           | SDG No.: KEY-URS126 |
| Matrix: (so | il/water)    | WATER              | Lab Sample ID:     | 1106129-004A        |
| Sample wt/v | ol: <u>5</u> | (g/mL) ML          | Lab File ID:       | A\A72651.D          |
| Level: (1   | ow/med)      | FOM                | Date Received:     | 06/02/11            |
| % Moisture: | not dec.     |                    | Date Analyzed:     | 06/06/11            |
| GC Column:  | Rtx-624      | ID: <u>.18</u> (mm | ) Dilution Factor: | 1.00                |
| Soil Extrac | t Volume:    | (μ <b>L</b> )      | Soil Aliquot Volu  | me (µL)             |

| CAS NO. | COMPOUND           | (µg/L or µg/Kg) <u>UG/L</u> | Q |
|---------|--------------------|-----------------------------|---|
| 71-4    | 3-2 Benzene        | 1                           | U |
| 108-8   | 8-3 Toluene        | 1                           | U |
| 100-4   | 1-4 Ethylbenzene   | 1                           | ט |
| 1330-2  | 0-7 Xylene (total) | 1                           | U |

#### VOLATILE ORGANICS ANALYSIS DATA SHEET

| EDA | SAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NO  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| LEA | DESTRUCTION OF THE PERSON OF T | 110 |

HIMW-12D

| Lab Name:   | H2M LABS      | INC       | Contra            | ct:               |                     |
|-------------|---------------|-----------|-------------------|-------------------|---------------------|
| Lab Code:   | н2м           | Case No.: | KEY-URS SAS       | No.:              | SDG No.: KEY-URS126 |
| Matrix: (so | il/water)     | WATER     |                   | Lab Sample ID:    | 1106129-005A        |
| Sample wt/v | rol: <u>5</u> | (g/mL     | ) <u>wr</u>       | Lab File ID:      | A\A72652.D          |
| Level: (1   | .ow/med)      | TOM       |                   | Date Received:    | 06/02/11            |
| % Moisture: | not dec.      |           |                   | Date Analyzed:    | 06/06/11            |
| GC Column:  | Rtx-624       | ID        | : <u>.18</u> (mm) | Dilution Factor:  | 1.00                |
| Soil Extrac | et Volume:    |           | (hr)              | Soil Aliquot Volu | ime (µL)            |

|          |                  | CONCENTRATION UNITS:        |   |  |
|----------|------------------|-----------------------------|---|--|
| CAS NO.  | COMPOUND         | (µg/L or µg/Kg) <u>UG/L</u> |   |  |
| 71-43-   | 2 Benzene        | 1                           | U |  |
| 108-88-  | 3 Toluene        | 1                           | Ū |  |
| 100-41-  | 4 Ethylbenzene   | 1                           | บ |  |
| 1330-20- | 7 Xvlene (total) | 1                           | Ū |  |

### VOLATILE ORGANICS ANALYSIS DATA SHEET

| FB |  |
|----|--|
|    |  |

| Lab Name:   | H2M LABS     | INC       | (         | Contra | ot:               |            |            |
|-------------|--------------|-----------|-----------|--------|-------------------|------------|------------|
| Lab Code:   | <u>н2м</u>   | Case No.: | KEY-URS   | SAS    | No.:              | SDG No.:   | KEY-URS126 |
| Matrix: (so | il/water)    | WATER     |           |        | Lab Sample ID:    | 1106129-00 | 6A         |
| Sample wt/v | ol: <u>5</u> | (g/mL     | <u>ML</u> |        | Lab File ID:      | A\A72648.I | !          |
| Level: (1   | ow/med)      | TOM       |           |        | Date Received:    | 06/02/11   |            |
| % Moisture: | not dec.     |           |           |        | Date Analyzed:    | 06/06/11   |            |
| GC Column:  | Rtx-624      | ID:       | .18       | (mm)   | Dilution Factor:  | 1.00       |            |
| Soil Extrac | t Volume:    |           | (pL)      |        | Soil Aliquot Volu | ıme        | (pL)       |

| CAS NO. COMPOUND |           | COMPOUND       | ( $\mu$ g/L or $\mu$ g/Kg) $\underline{U}$ G/L | Q |
|------------------|-----------|----------------|------------------------------------------------|---|
|                  | 71-43-2   | Benzene        | 1                                              | U |
|                  | 108-88-3  | Toluene        | 1                                              | ט |
|                  | 100-41-4  | Ethylbenzene   | 1                                              | υ |
|                  | 1330-20-7 | Xylene (total) | 1                                              | U |

#### VOLATILE ORGANICS ANALYSIS DATA SHEET

108-88-3

100-41-4 1330-20-7 Toluene

Ethylbenzene Xylene (total)

| SAMPLE |  |
|--------|--|
|        |  |

HIMW-20S

| Lab Name: H2M LABS   | INC Contra            | act:             |                       |        |
|----------------------|-----------------------|------------------|-----------------------|--------|
| Lab Code: H2M        | Case No.: KEY-URS SAS | No.:             | SDG No.: KEY-U        | JRS126 |
| Matrix: (soil/water) | WATER                 | Lab Sample ID:   | 1106191-001A          |        |
| Sample wt/vol: 5     | (g/ml) ML             | Lab File ID:     | A\A72656.D            |        |
| Level: (low/med)     | LOW                   | Date Received:   | 06/03/11              |        |
| % Moisture: not dec. |                       | Date Analyzed:   | 06/06/11              |        |
| GC Column: Rtx-624   | ID: <u>.18</u> (mm)   | Dilution Factor: | 1.00                  |        |
| Soil Extract Volume: | (pL)                  | Soil Aliquot Vol | ume(µL)               |        |
|                      |                       | CONCE            | TRATION UNITS:        |        |
| CAS NO.              | COMPOUND              | (µg/L            | or µg/Kg) <u>UG/L</u> | Q      |
| 71-43-2              | Benzene               |                  | 1                     | UJ     |

2/12/11

| EPA | SAMPLE | NO |
|-----|--------|----|
|-----|--------|----|

HIMW-20I

| Lab Name:   | H2M LABS      | INC Co            | ontract:            |                     |
|-------------|---------------|-------------------|---------------------|---------------------|
| Lab Code:   | <u>н2м</u>    | Case No.: KEY-URS | SAS No.:            | SDG No.: KEY-URS126 |
| Matrix: (sc | oil/water)    | WATER             | Lab Sample ID:      | 1106191-002A        |
| Sample wt/v | rol: <u>5</u> | (g/mL) ML         | Lab File ID:        | A\A72657.D          |
| Level: (]   | Low/med)      | rom               | Date Received:      | 06/03/11            |
| % Moisture: | not dec.      |                   | Date Analyzed:      | 06/06/11            |
| GC Column:  | Rtx-624       | ID: <u>.18</u> (m | m) Dilution Factor: | 1.00                |
| Soil Extra  | ct Volume:    | (µL)              | Soil Aliquot Volu   | me (µL)             |

#### CONCENTRATION UNITS:

| CAS NO.  | COMPOUND         | (µg/L or µg/Kg) UG/L | Q |
|----------|------------------|----------------------|---|
| 71-43-   | 2 Benzene        | 28                   | J |
| 108-88-  | 3 Toluene        | 11                   | 1 |
| 100-41-  | 4 Ethylbenzene   | 19                   |   |
| 1330-20- | 7 Xylene (total) | 150                  | 1 |

7/12/11

OLM04.2

# SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

HIMW-5S

Lab Name: H2M LABS INC Contract: Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS126 Matrix: (soil/water) WATER Lab Sample ID: 1106129-001B Sample wt/vol: 1000 (g/mL) mlLab File ID: A\C60341.D Level: (low/med) LOW Date Received: 06/02/11 % Moisture: Decanted: (Y/N) N Date Extracted: 06/07/11 Concentrated Extract Volume: 1000 ( $\mu$ L) Date Analyzed: 06/10/11 Injection Volume:  $\underline{2}$  ( $\mu$ L) Dilution Factor: 1.00

Extraction: (Type) CONT

|          |                        | CONCENTRATION UNITS:                           |          |
|----------|------------------------|------------------------------------------------|----------|
| CAS NO.  | COMPOUND               | ( $\mu$ g/L or $\mu$ g/Kg) $\underline{U}$ G/L | Q        |
| 91-20-3  | Naphthalene            | 10                                             | Ü        |
| 91-57-6  | 2-Methylnaphthalene    | 10                                             | <u> </u> |
| 208-96-8 | Acenaphthylene         | 10                                             | Ū        |
| 83-32-9  | Acenaphthene           | 10                                             | Ü        |
| 86-73-7  | Fluorene               | 10                                             | ט        |
| 85-01-8  | Phenanthrene           | 10                                             | Ü        |
| 120-12-7 | Anthracene             | 10                                             | U        |
| 206-44-0 | Fluoranthene           | 10                                             | Ū        |
| 129-00-0 | Pyrene                 | 10                                             | U        |
| 56-55-3  | Benzo(a)anthracene     | 10                                             | Ū        |
| 218-01-9 | Chrysene               | 10                                             | Ü        |
| 205-99-2 | Benzo(b)fluoranthene   | 10                                             | Ū        |
| 207-08-9 | Benzo(k)fluoranthene   | 10                                             | U        |
| 50-32-8  | Benzo(a)pyrene         | 10                                             | U        |
| 193-39-5 | Indeno(1,2,3-cd)pyrene | 10                                             | U        |
| 53-70-3  | Dibenzo(a,h)anthracene | 10                                             | U        |

<sup>(1)</sup> Cannot be separated from Diphenylamine

191-24-2 Benzo(g,h,i)perylene

GPC Cleanup: (Y/N) N pH: \_\_\_\_

# SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

HIMW-8D

| Lab Name: H2M LABS   | INC             | Cont           | ract:             |                     |
|----------------------|-----------------|----------------|-------------------|---------------------|
| Lab Code: H2M        | Case No.:       | KEY-URS        | SAS No.:          | SDG No.: KEY-URS126 |
| Matrix: (soil/water) | WATER           | •              | Lab Sample ID:    | 1106129-002B        |
| Sample wt/vol:       | <u>1000</u> (g, | /mL) <u>ml</u> | Lab File ID:      | A\C60344.D          |
| Level: (low/med)     | TOM             |                | Date Received:    | 06/02/11            |
| % Moisture:          | Decanted: (Y)   | /и) <u>й</u>   | Date Extracted:   | 06/07/11            |
| Concentrated Extract | Volume: 10      | <u>00</u> (μL) | Date Analyzed:    | 06/10/11            |
| Injection Volume:    | <u>2</u> (μL)   |                | Dilution Factor:  | 1.00                |
| GPC Cleanup: (Y/N)   | <u>N</u> p      | H:             | Extraction: (Type | ) <u>CONT</u>       |
| <b>3.2.1.</b>        |                 |                | CONCE             | TRATION UNITS:      |
| CAS NO               | COMPOINTS       |                | , ,-              |                     |

|          |                        |      | CONCENTRATION UNITS:                                 |   |
|----------|------------------------|------|------------------------------------------------------|---|
| CAS NO.  | COMPOUND               |      | ( $\mu$ g/L or $\mu$ g/Kg) $\underline{\text{UG/L}}$ | Q |
| 91-20-3  | Naphthalene            |      | 10                                                   | U |
| 91-57-6  | 2-Methylnaphthalene    |      | 10                                                   |   |
| 208-96-8 | Acenaphthylene         | Se e | 10                                                   | U |
| 83-32-9  | Acenaphthene           | 7.8  | 10                                                   | U |
| 86-73-7  | Fluorene               |      | 10                                                   | U |
| 85-01-8  | Phenanthrene           |      | 10                                                   | Ū |
| 120-12-7 | Anthracene             |      | 10                                                   | U |
| 206-44-0 | Fluoranthene           |      | 10                                                   | Ü |
| 129-00-0 | Pyrene                 |      | 10                                                   | Ū |
| 56-55-3  | Benzo(a)anthracene     |      | 10                                                   | Ū |
| 218-01-9 | Chrysene               |      | 10                                                   | U |
| 205-99-2 | Benzo(b) fluoranthene  |      | 10                                                   | Ū |
| 207-08-9 | Benzo(k)fluoranthene   |      | 10                                                   | Ū |
| 50-32-8  | Benzo(a) pyrene        |      | 10                                                   | Ū |
| 193-39-5 | Indeno(1,2,3-cd)pyrene |      | 10                                                   | U |
| 53-70-3  | Dibenzo(a,h)anthracene |      | 10                                                   | Ū |
| 191-24-2 | Benzo(g,h,i)perylene   |      | 10                                                   | U |

#### 1C

# SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

HIMW-8I

EPA SAMPLE NO.

Lab Name: H2M LABS INC Contract: Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS126 Matrix: (soil/water) WATER Lab Sample ID: 1106129-003B Sample wt/vol: 1000 (g/mL) ml Lab File ID: A\C60345.D Level: (low/med) LOW Date Received: 06/02/11 % Moisture: Decanted: (Y/N) N Date Extracted: 06/07/11 Concentrated Extract Volume: 1000 (µL) Date Analyzed: 06/10/11 Injection Volume:  $\underline{2}$  ( $\mu$ L) Dilution Factor: 1.00

Extraction: (Type) CONT

|           |                        | CONCENTRATION UNITS:                                 |   |
|-----------|------------------------|------------------------------------------------------|---|
| CAS NO.   | COMPOUND               | ( $\mu$ g/L or $\mu$ g/Kg) $\underline{\text{UG/L}}$ | Q |
| 91-20-3   | Naphthalene            | 10                                                   | บ |
| 91-57-6   | 2-Methylnaphthalene    | 10                                                   | U |
| 208-96-8  | Acenaphthylene         | 10                                                   | U |
| 83-32-9   | Acenaphthene           | 10                                                   | Ü |
| 86-73-7   | Fluorene               | 10                                                   | Ū |
| 85-01-8   | Phenanthrene           | 10                                                   | Ü |
| 120-12-7  | Anthracene             | 10                                                   | Ū |
| 206-44-0  | Fluoranthene           | 10                                                   | Ū |
| 129-00-0  | Pyrene                 | 10                                                   | U |
| 56-55-3 · | Benzo(a)anthracene     | 10                                                   | Ū |
| 218-01-9  | Chrysene               | 10                                                   | U |
| 205-99-2  | Benzo(b)fluoranthene   | 10                                                   | Ū |
| 207-08-9  | Benzo(k)fluoranthene   | 10                                                   | Ū |
| 50-32-8   | Benzo(a)pyrene         | 10                                                   | U |
| 193-39-5  | Indeno(1,2,3-cd)pyrene | 10                                                   | Ü |
| 53-70-3   | Dibenzo(a,h)anthracene | 10                                                   | U |
| 191-24-2  | Benzo(g,h,i)perylene   | 10                                                   | υ |

(1) Cannot be separated from Diphenylamine

GPC Cleanup: (Y/N) N pH: \_\_\_\_

# SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

| HIMW-8S    |  |
|------------|--|
| 1141111 00 |  |
|            |  |
|            |  |

Lab Name: H2M LABS INC Contract: Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS126 Matrix: (soil/water) WATER Lab Sample ID: 1106129-004B Sample wt/vol: 1000 (g/mL) <u>ml</u> Lab File ID: A\C60346.D Level: (low/med) LOW Date Received: 06/02/11 % Moisture: Decanted: (Y/N) N Date Extracted: 06/07/11

Dilution Factor: 1.00

Concentrated Extract Volume: 1000 (µL) Date Analyzed: 06/10/11

GPC Cleanup: (Y/N) N pH: \_\_\_ Extraction: (Type) CONT

|          |                        | CONCENTRATION UNITS:                   |   |
|----------|------------------------|----------------------------------------|---|
| CAS NO.  | COMPOUND               | ( $\mu$ g/L or $\mu$ g/Kg) <u>UG/L</u> | Q |
| 91-20-3  | Naphthalene            | 10                                     | U |
| 91-57-6  | 2-Methylnaphthalene    | 10                                     | Ū |
| 208-96-8 | Acenaphthylene         | 2                                      | J |
| 83-32-9  | Acenaphthene           | 10                                     | Ü |
| 86-73-7  | Fluorene               | 10                                     | U |
| 85-01-8  | Phenanthrene           | 10                                     | Ų |
| 120-12-7 | Anthracene             | 10                                     | Ū |
| 206-44-0 | Fluoranthene           | 10                                     | Ū |
| 129-00-0 | Pyrene                 | 10                                     | Ū |
| 56-55-3  | Benzo(a)anthracene     | 10                                     | U |
| 218-01-9 | Chrysene               | 10                                     | Ū |
| 205-99-2 | Benzo(b) fluoranthene  | 10                                     | U |
| 207-08-9 | Benzo(k)fluoranthene   | 10                                     | Ū |
| 50-32-8  | Benzo(a)pyrene         | 1                                      | J |
| 193-39-5 | Indeno(1,2,3-cd)pyrene | 10                                     | U |
| 53-70-3  | Dibenzo(a,h)anthracene | 10                                     | υ |
| 191-24-2 | Benzo(g,h,i)perylene   | 10                                     | Ü |

(1) Cannot be separated from Diphenylamine

Injection Volume:  $\underline{2}$  ( $\mu$ L)

# SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

HIMW-12D

| Lab Name: H2M LABS INC Contract: |  |
|----------------------------------|--|
|----------------------------------|--|

Lab Code: H2M

Case No.: KEY-URS SAS No.: SDG No.: KEY-URS126

Matrix: (soil/water) WATER Lab Sample ID: 1106129-005B

Sample wt/vol: 1000 (g/mL) ml Lab File ID: A\C60347.D

Level: (low/med) LOW Date Received: 06/02/11

% Moisture: Decanted: (Y/N) N Date Extracted: 06/07/11

Concentrated Extract Volume: 1000 (µL) Date Analyzed: 06/10/11

Injection Volume: 2 (μL) Dilution Factor: 1.00

GPC Cleanup: (Y/N) N pH: Extraction: (Type) CONT

|          |                        | CONCENTRATION UNITS:                           |   |
|----------|------------------------|------------------------------------------------|---|
| CAS NO.  | COMPOUND               | ( $\mu$ g/L or $\mu$ g/Kg) $\underline{U}$ G/L | Q |
| 91-20-3  | Naphthalene            | 10                                             | U |
| 91-57-6  | 2-Methylnaphthalene    | 10                                             | ט |
| 208-96-8 | Acenaphthylene         | 10                                             | U |
| 83-32-9  | Acenaphthene           | 10                                             | Ü |
| 86-73-7  | Fluorene               | 10                                             | U |
| 85-01-8  | Phenanthrene           | 10                                             | U |
| 120-12-7 | Anthracene             | 10                                             | Ū |
| 206-44-0 | Fluoranthene           | 10                                             | U |
| 129-00-0 | Pyrene                 | 10                                             | บ |
| 56-55-3  | Benzo(a) anthracene    | 10                                             | ט |
| 218-01-9 | Chrysene               | 10                                             | Ŭ |
| 205-99-2 | Benzo(b) fluoranthene  | 10                                             | Ü |
| 207-08-9 | Benzo(k) fluoranthene  | 10                                             | Ŭ |
| 50-32-8  | Benzo(a)pyrene         | 10                                             | Ū |
| 193-39-5 | Indeno(1,2,3-cd)pyrene | 10                                             | Ū |
| 53-70-3  | Dibenzo(a,h)anthracene | 10                                             | Ū |
| 191-24-2 | Benzo(g,h,i)perylene   | 10                                             | Ü |

<sup>(1)</sup> Cannot be separated from Diphenylamine

EPA SAMPLE NO.

# SEMIVOLATILE ORGANICS ANALYSIS DATA SH

|           | SEMITODATIES | ORGANICS ANALYSI | S DATA SHEET | FB |
|-----------|--------------|------------------|--------------|----|
| Lab Name: | H2M LABS INC | Cor              | ntract:      |    |

Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS126

Matrix: (soil/water) WATER Lab Sample ID: 1106129-006B

Lab File ID: Sample wt/vol: 1000 (g/mL) <u>ml</u> A\C60348.D

Level: (low/med) <u>LOW</u> Date Received: 06/02/11

% Moisture: Decanted: (Y/N) N Date Extracted: 06/07/11

Concentrated Extract Volume: 1000 ( $\mu$ L) Date Analyzed: 06/10/11

Injection Volume:  $(\mu L)$ Dilution Factor: 1.00

GPC Cleanup: (Y/N) N pH: \_\_\_\_ Extraction: (Type) CONT

|          |                        | CONCENTRATION UNITS:            |              |
|----------|------------------------|---------------------------------|--------------|
| CAS NO.  | COMPOUND               | ( $\mu$ g/L or $\mu$ g/Kg) UG/L | Q            |
| 91-20-3  | Naphthalene            | 10                              | U            |
| 91-57-6  | 2-Methylnaphthalene    | 10                              | U            |
| 208-96-8 | Acenaphthylene         | 10                              | U            |
| 83-32-9  | Acenaphthene           | 10                              | Ū            |
| 86-73-7  | Fluorene               | 10                              | บ            |
| 85-01-8  | Phenanthrene           | 10                              | Ū            |
| 120-12-7 | Anthracene             | 10                              | U            |
| 206-44-0 | Fluoranthene           | 10                              | U            |
| 129-00-0 | Pyrene                 | 10                              | U            |
| 56-55-3  | Benzo(a)anthracene     | 10                              | Ü            |
| 218-01-9 | Chrysene               | 10                              | Ū            |
| 205-99-2 | Benzo(b) fluoranthene  | 10                              | <del>-</del> |
| 207-08-9 | Benzo(k)fluoranthene   | 10                              | U            |
| 50-32-8  | Benzo(a)pyrene         | 10                              | Ū            |
| 193-39-5 | Indeno(1,2,3-cd)pyrene | 10                              | U            |
| 53-70-3  | Dibenzo(a,h)anthracene | 10                              | Ū            |
| 191-24-2 | Benzo(g,h,i)perylene   | 10                              | บ            |

# EPA SAMPLE NO.

# SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

HIMW-20S

Lab Code: H2M

Case No.: KEY-URS SAS No.:

SDG No.: KEY-URS126

Matrix: (soil/water) WATER

Lab Sample ID:

1106191-001B

Sample wt/vol: 1000

(g/mL) ml

Lab File ID: A\C60306.D

Level: (low/med)

LOW

Date Received:

06/03/11

% Moisture:

Decanted: (Y/N) N Date Extracted:

06/06/11

Concentrated Extract Volume: 1000 ( $\mu$ L)

Date Analyzed:

06/09/11

Injection Volume:  $\underline{2}$  ( $\mu$ L)

Dilution Factor: 1.00

GPC Cleanup: (Y/N) N pH: \_\_\_\_

Extraction: (Type) CONT

## CONCENTRATION UNITS:

| ~~~ | NT/   |
|-----|-------|
| CAN | 131.1 |

## COMPOUND

|          |                        | (half or halfa) og/11 | v          |
|----------|------------------------|-----------------------|------------|
| 91-20-3  | Naphthalene            | 10                    | υŢ         |
| 91-57-6  | 2-Methylnaphthalene    | 10                    | <b>ט</b> ו |
| 208-96-8 | Acenaphthylene         | 10                    | U          |
| 83-32-9  | Acenaphthene           | 10                    | U          |
| 86-73-7  | Fluorene               | 10                    | U          |
| 85-01-8  | Phenanthrene           | 10                    | U          |
| 120-12-7 | Anthracene             | 10                    | Ū          |
| 206-44-0 | Fluoranthene           | 10                    | ט          |
| 129-00-0 | Pyrene                 | 10                    | Ü          |
| 56-55-3  | Benzo(a)anthracene     | 10                    | U          |
| 218-01-9 | Chrysene               | 10                    | U          |
| 205-99-2 | Benzo(b) fluoranthene  | 10                    | Ψ          |
| 207-08-9 | Benzo(k)fluoranthene   | 10                    | U          |
| 50-32-8  | Benzo(a)pyrene         | 10                    | U          |
| 193-39-5 | Indeno(1,2,3-cd)pyrene | 10                    | ט          |
| 53-70-3  | Dibenzo(a,h)anthracene | 10                    | U          |
| 191-24-2 | Benzo(g,h,i)perylene   | 10                    | שלט        |

# SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

HIMW-20I

Lab Name: H2M LABS INC

Contract:

Lab Code: H2M

Case No.: KEY-URS SAS No.:

SDG No.: KEY-URS126

Matrix: (soil/water) WATER

Lab Sample ID:

1106191-002B

Sample wt/vol:

1000

(g/mL) <u>ml</u>

Lab File ID:

A\C60307.D

Level: (low/med)

LOW

Date Received:

06/03/11

% Moisture:

Decanted: (Y/N)

N Date Extracted: 06/06/11

Concentrated Extract Volume: 1000 (µL)

Date Analyzed:

06/09/11

Injection Volume:

2  $(\mu L)$  Dilution Factor: 1.00

GPC Cleanup: (Y/N) N pH: \_\_\_\_

Extraction: (Type) CONT

CONCENTRATION UNITS:

CAS NO.

COMPOUND

 $(\mu g/L \text{ or } \mu g/Kg) \underline{UG/L}$ 

| 91-20-3  | Naphthalene            | 240 310 | JE DO            |
|----------|------------------------|---------|------------------|
| 91-57-6  | 2-Methylnaphthalene    | 50      | T                |
| 208-96-8 | Acenaphthylene         | I10 120 | ₽ O              |
| 83-32-9  | Acenaphthene           | 11      | 5                |
| 86-73-7  | Fluorene               | 19      |                  |
| 85-01-8  | Phenanthrene           | 18      | J/               |
| 120-12-7 | Anthracene             | 2       | J                |
| 206-44-0 | Fluoranthene           | 10      | UT               |
| 129-00-0 | Pyrene                 | 10      | U                |
| 56-55-3  | Benzo(a)anthracene     | 10      | U                |
| 218-01-9 | Chrysene               | 10      | Ü                |
| 205-99-2 | Benzo(b) fluoranthene  | 10      | U                |
| 207-08-9 | Benzo(k)fluoranthene   | 10      | U                |
| 50-32-8  | Benzo(a)pyrene         | 10      | Ü                |
| 193-39-5 | Indeno(1,2,3-cd)pyrene | 10      | U                |
| 53-70-3  | Dibenzo(a,h)anthracene | 10      | U                |
| 191-24-2 | Benzo(g,h,i)perylene   | 10      | <del>"</del>   0 |

## SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

HIMW-20IDL Lab Name: H2M LABS INC Contract: Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS126 Matrix: (soil/water) WATER Lab Sample ID: 1106191-002BDL Sample wt/vol: 1000 (g/mL) Lab File ID: A/C60321.D Date Received: Level: (low/med) LOW 06/03/11 % Moisture: Decanted: (Y/N) Date Extracted: N 06/06/11 Concentrated Extract Volume:  $\underline{1000}$  ( $\mu L$ ) Date Analyzed: 06/09/11 Injection Volume: 2 (μL) Dilution Factor: 5.00 Extraction: (Type) CONT GPC Cleanup: (Y/N) <u>N</u> pH: CONCENTRATION UNITS: CAS NO. COMPOUND (μg/L or μg/Kg) UG/L 91-20-3 Naphthalene 310 D 91-57-6 2-Methylnaphthalene 48 DJ 208-96-8 Acenaphthylene 120 D Acenaphthene 83-32-9 12 ÐJ 86-73-7 Fluorene

|          | I                      | 1           | ,          |    |
|----------|------------------------|-------------|------------|----|
| 85-01-8  | Phenanthrene           |             | 18/        | DJ |
| 120-12-7 | Anthracene             |             | <i>5</i> 0 | Ū  |
| 206-44-0 | Fluoranthene           |             | 50         | Ū  |
| 129-00-0 | Pyrene                 |             | / 50       | Ų  |
| 56-55-3  | Benzo(a)anthracene     |             | 50         | Ū  |
| 218-01-9 | Chrysene               |             | 50         | Ū  |
| 205-99-2 | Benzo(b)fluoranthene   |             | 50         | Ü  |
| 207-08-9 | Benzo(k)fluoranthene   |             | 50         | U  |
| 50-32-8  | Benzo(a)pyrene         | /           | 50         | Ū  |
| 193-39-5 | Indeno(1,2,3-cd)pyrene |             | 50         | Ū  |
| 53-70-3  | Dibenzo(a,h)anthracene |             | 50         | Ū  |
| 191-24-2 | Benzo(g,h,i)perylene   |             | \ 50       | Ū  |
|          |                        | <del></del> |            |    |

# ATTACHMENT B SUPPORT DOCUMENTATION

# H2M LABS, INC.

# SDG NARRATIVE FOR VOLATILE ORGANICS SAMPLES RECEIVED: 5/24/11, 5/25/22, 5/27/11 & 5/31/11 SDG #: KEY-URS120

For Sample(s):

| HIMW-13D  | HIMW-25    | HIMW-14D   | HIMW-3D    |
|-----------|------------|------------|------------|
| HIMW-13I  | HIMW-24    | HIMW-14I   | HIMW-3I    |
| HIMW-13S  | TRIP BLANK | HIMW-22    | HIMW-12I   |
| TB 052411 | HIMW-3S    | HIMW-23    | HIMW-12S   |
| HIMW-15D  | HIMW-5D    | DUP11 0526 | DUP11 0531 |
| HIMW-15I  | HIMW-5I    | TRIP BLANK | TRIP BLANK |

The above sample(s) was/were analyzed for a select list of volatile organic analytes by EPA method 8260B.

All QC data and calibrations met the requirements of the method, unless discussed below, and no problems were encountered with sample analysis. The following should be noted:

No matrix spike/matrix spike duplicate was submitted. Lab fortified blanks were analyzed and indicate good method efficiency.

Samples HIMW-25 and HIMW-24 were reanalyzed at a dilution due to concentration levels of targeted analytes above the calibration range. Both sets of data are submitted.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Date Reported: June 24, 2011

Joan M. Slavin

Senior Vice President

# H2M LABS, INC.

# SDG NARRATIVE FOR SEMIVOLATILE ORGANICS SAMPLES RECEIVED: 5/24/11, 5/25/11, 5/27/11 & 5/31/11 SDG #: KEY-URS120

For Sample(s):

| HIMW-13D | HIMW-25 | HIMW-14D   | HIMW-3D    |
|----------|---------|------------|------------|
| HIMW-13I | HIMW-24 | HIMW-14I   | HIMW-3I    |
| HIMW-13S | HIMW-3S | HIMW-22    | HIMW-12I   |
| HIMW-15D | HIMW-5D | HIMW-23    | HIMW-12S   |
| HIMW-15I | HIMW-5I | DUP11 0526 | DUP11 0531 |

The above sample(s) was/were analyzed for a select list of semivolatile organic analytes by EPA method 8270C.

All QC data and calibrations met the requirements of the method unless discussed below, and no problems were encountered with sample analysis. The following should be noted:

No matrix spike/matrix spiked duplicate was submitted. Lab fortified blanks were analyzed and indicate good method efficiency.

Samples HIMW-25, HIMW-24, HIMW-5D and HIMW-5I were reanalyzed at a dilution due to concentration levels of targeted analytes above the calibration range. Both sets of data are submitted.

The surrogate standard d 5 nitrobenzene had high surrogate recoveries in sample HIMW-5I. All surrogate recoveries were diluted out in the dilution of sample HIMW-5I.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Date Reported: June 24, 2011

Joann M. Slavin Senior Vice President

LABS, INC.

575 Broad Hollow Rd, Melville, NY 11747-5076

| 420-8436                                |                     |                |           |                              | 0000 |
|-----------------------------------------|---------------------|----------------|-----------|------------------------------|------|
| Tel: (631) 694-3040 Fax: (631) 420-8436 | PROJECT NAME/NUMBER | NATIONAL CIRID | HOMBION 2 | SAMPLERS: (signature)/Cilent |      |

12 Sep D. SLAIN ([1)XXX

Description Sample Container

76 856 5636.

Phone Number:

11176098.

PIS/Quote #

KEUN GONAKU

HZM SDG NO: KEYLURS 12.0

**EXTERNAL CHAIN OF CUSTODY** 

Project Contact:

NOTES:

CORPORATION

Ker-UK

CLIENT: UZ

2260

SHAD

ANALYSIS REQUESTED ORGANIC Total No. of Containers

PCB PCB ANS AQV

FIELD I.D.

DATE | TIME |MATRIX

TURNAROUND TIME:

DELIVERABLES

3

100 E

1777

HIMM - 13D

JIN S Z Z Z Z

Ö

1242 142

REMARKS:

.063

1105963

LABI.D. NO.

CM

Metal

NORG

100

18

LABORATORY USE ONLY

Discrepancies Between

8/24/11/12/S

<u>iae</u>

(

8CANX

元で

3

#

by: (Signature)

Time 500

5-24-5

ス 8

Relifiquished by: (Signature)

Signature)

1. Shipped Calend Delivered Airi 2. Ambient or(chilled), Temp 1 c 6 3. Received in 1800d condition: Oor N 4. Property preserved Cyr N

COC Record? Yor N Sample Labels and

Explain:

COC Tape was:

Present on outer package: York)
 Unbroken on outer package: York)
 COC record present & complete upon sample receipt:
 Vpr N

Ē

Date

Received by: (Signature)

Time

Date

Relinquished by. (Signature)

WHITE GRBY 2008 BIGINAL

YELLOW COPY - CLIENT

PINK COPY - LABORATORY



labs

H2M LABS INC 575 Broad Hollow Road Melville, NY 11747 TEL: 631-694-3040 FAX; 631-420-8436

Website: www.h2mlabs.com

KEY-URS 120

# Sample Receipt Checklist

Checked b

Client Name KEY-URS Date and Time Receive 5/24/2011 3:00:00 PM Work Order Numbe 1105963 RcptNo: 1 Received by MelissaWatson Completed by Reviewed by: Reviewed Date: 50711 Completed Date: 5 Carrier name H2M Pickup No . Chain of custody present? Yes V Chain of custody signed when relinquished and received? Yes No. Chain of custody agrees with sample labels? Yes No ... Not Presen Are matrices correctly identified on Chain of custody? No No is it clear what analyses were requested? Yes No ... Not Presen Custody seals intact on sample bottles? Yes No 🗌 Samples in proper container/bottle? Were correct preservatives used and noted? Yes No [...] Sample containers intact? Yes  $\checkmark$ No 🛄 Yes 🔽 No Sufficient sample volume for indicated test? Yes 🗹 No 🗌 Were container lables complete (ID, Pres, Date)? V All samples received within holding time? Yes No Yes 🗹 No 🗔 Was an attempt made to cool the samples? All samples received at a temp. of > 0° C to 6.0° C? Yes No 🗹 Response when temperature is outside of range: Samples were collected the same day and chilled. Preservative added to bottles: Yes 🗸 No ... Sample Temp. taken and recorded upon receipt? To V No . Water - Were bubbles absent in VOC vials? No Vials No . Water - Was there Chlorine Present? Yes ~ No 🗔 Water - pH acceptable upon receipt? No Water Are Samples considered acceptable? Yes 🗹 No L. No 🗸 **Custody Seals present?** Yes Yes ... No 🗸 Traffic Report or Packing Lists present? Air Bill Sticker 🗔 Airbill or Sticker? Not Present Airbill No: No 🗸 Yes Sample Tags Present? Sample Tags Listed on COC? Yes ... No 🗹 Tag Numbers: Broken ... Intact 🗹 Leaking Sample Condition? Case Number: SDG: SAS: KEY-URS120

Any No and/or NA (not applicable) response must be detailed in the comments section be

90700

LABS, INC. 12X

575 Broad Hollow Rd, Melville, NY 11747-5076

ح کلم Tel: (631) 694-3040 Fax: (631) 420-8436 HEMPSTEAD OF 7 800 C apro PROJECT NAME/NUMBER F201F2

BE KENIN CONNE

Phone Number

46

HZM SDG NO: KEY U

**EXTERNAL CHAIN OF CUSTODY** 

Project Contact:

NOTES:

CORPORATION

CLIENT:

86094111

PIS/Quofe #

REMARKS:

LAB I.D. NO. D5444

CM

Metal

PCB Pest

**VN8** 

YÖN

ORGANIC

Containers Total No. of

ANALYSIS REQUESTED

S. HALL

STEX

Description

Sample Container

8

3 3

**DELIVERABLES**:

TURNAROUND TIME: STANDARL

FIELD I.D. エデスシ スタエ MATRIX 3 8 TIME 8 ام <u>ق</u> DATE

とミエ てるに 3

Show

なれる

Received by: (Signature) 7

Sister

Jan.

Relinquished by: (Signature)

by: (Signature)

Date

Explain: 16:32 5-25-11

里

Oate Oate

Received by: (Signature

Time

Sate

Refinquished by: (Signature)

1. Present on outer package: Y or N | O | A 2. Unbroken on outer package: Y or N A COC record present & complete upon sample receipt:

Sembles were:

1. Shipped or Hand Defivered Art

2. Ambient or chilled, Temp or 1

3. Received in good coadition: (9 or N

4. Property preserved: (9 or N

LABORATORY USE ONLY

Discrepancies Between

15.12

5.25.1

3

Date

1100

COC Record? Yor N Sample Labels and

PINK COPY - LABORATORY

YELLOW COPY - CLIENT

WHYE GROPY O BRIGINAL



H2M LABS INC 575 Broad Hollow Road Melville, NY 11747 TEL: 631-694-3040.FAX: 631-420-8436 Website: www.h2mlabs.com

# Key-URS 120

# Sample Receipt Checklist

| Client Name KEY-URS                |                                    |           |                 | Date and T                              | ime Receive     | 5/25/    | 2011 4:32:00 PM       |
|------------------------------------|------------------------------------|-----------|-----------------|-----------------------------------------|-----------------|----------|-----------------------|
| Work Order Numbe 1105A             | 44 RcptNo: 1                       |           |                 | Received b                              | y Tamika Ric    | :ks      | :                     |
| lh.                                |                                    |           | _               | · · · · tak                             |                 |          | :<br>-<br>-<br>:<br>: |
| Completed by 17 \                  | _l.,                               |           | Re              | eviewed by: \$24<br>eviewed Date: 5]2   | i               |          | :                     |
| Completed Date: 5/25               | 51/1                               |           | Re              | eviewed Date: 5 2                       | 711             |          | •                     |
| Carrier name <u>H2M Pickup</u>     |                                    |           |                 |                                         |                 |          | •                     |
| Chain of custody present?          |                                    | Yes       | V               | No []                                   |                 |          | :                     |
| Chain of custody signed whe        | n relinquished and received?       | Yes       | V               | No 🛄                                    |                 |          |                       |
| Chain of custody agrees with       | sample labels?                     | Yes       | ~               | No                                      | Not Presen      | • .      |                       |
| Are matrices correctly identifi    | ed on Chain of custody?            | Yes       | V               | No                                      |                 |          |                       |
| Is it clear what analyses were     | e requested?                       | Yes       | ✓               | No 🛄                                    |                 |          |                       |
| Custody seals intact on samp       | ole bottles?                       | Yes       |                 | No 🗀                                    | Not Presen      | ~        |                       |
| Samples in proper container/       | bottle?                            | Yes       | V               | No                                      |                 |          |                       |
| Were correct preservatives u       | sed and noted?                     | Yes       | ✓               | No 🗔                                    |                 |          | :                     |
| Sample containers intact?          |                                    | Yes       | ✓.              | No 🗔                                    |                 |          |                       |
| Sufficient sample volume for       | indicated test?                    | Yes       | $oldsymbol{ u}$ | No 🗔                                    |                 |          |                       |
| Were container lables comple       | ete (ID, Pres, Date)?              | Yes       | V               | No 🗀                                    |                 |          | :                     |
| All samples received within h      | olding time?                       | Yes       | V               | No 🛄                                    |                 |          |                       |
| Was an attempt made to coo         | I the samples?                     | Yes       | Y               | No 🗀                                    |                 |          |                       |
| All samples received at a terr     | np. of > 0° C to 6.0° C?           | Yes       |                 | No 🗹                                    |                 |          |                       |
| Response when temperature          | is outside of range:               | Sampl     | es we           | ere collected the san                   | ne day and chil | led.     |                       |
| Preservative added to bottles      | t i                                |           |                 |                                         |                 |          |                       |
| Sample Temp. taken and rec         | orded upon receipt?                | Yes       | V               | No                                      | To 14           | 1.1 0    |                       |
| Water - Were bubbles absent        | in VOC vials?                      | Yes       |                 | No                                      | No Vials        | 1        |                       |
| Water - Was there Chlorine P       | resent?                            | Yes       |                 | No 🖳                                    | NA              | <b>Y</b> |                       |
| Water - pH acceptable upon r       | receipt?                           | Yes       |                 | No 🗔                                    | No Water        | ii       |                       |
| Are Samples considered acco        | eptable?                           | Yes       | Y               | No 🗔                                    |                 |          |                       |
| Custody Seals present?             |                                    | Yes       |                 | No 🔽                                    |                 |          |                       |
| Traffic Report or Packing List     | s present?                         | Yes       |                 | No 🗹                                    | •               |          |                       |
| Airbill or Sticker?<br>Airbill No: |                                    | Air Bill  |                 | Sticker                                 | Not Present     | <b>y</b> |                       |
| Sample Tags Present?               |                                    | Yes       |                 | No 🗸                                    |                 |          |                       |
| Sample Tags Listed on COC          | ?                                  | Yes       | [.]             | No 🗸                                    |                 |          |                       |
| Tag Numbers:                       |                                    |           |                 |                                         |                 |          |                       |
| Sample Condition?                  |                                    | Intact    | <b>V</b>        | Broken                                  | Leaking         | :.:      |                       |
| Case Number:                       | SDG:<br>KEY-URS120                 |           | ;               | SAS:                                    |                 |          |                       |
|                                    |                                    |           | Ac              | fjusted?                                | Ch              | ecked    | b                     |
|                                    |                                    |           |                 | *************************************** |                 |          | <del></del>           |
| Any No and/or NA (not applic       | able) response must be detailed in | the comme | nts s           | ection be                               |                 |          |                       |

HZM LABS, INC.

35259

**EXTERNAL CHAIN OF CUSTODY** 

716856 5686. KENN CANARA 2. Unbroken on outer package: Yor N Diff A COC record present & complete upon sample receipt: REMARKS: HZM SDG NO: KEY-U Project Contact: 1. Shipped or Hand Delivered Ak 2. Amblent or chilled, Temp 1. C 3. Received in good coyoliton (\*\*) or N 4. Properly preserved: (\*\*) or N 1. Present on outer package: Yor PIS/Quote # LABORATORY USE ONLY 336 do-00 6 \$9° COC Tape was: LAB I.D. NO. Discrepancies Between COC Record? Yor N NOTES: Sample Labels and COLPOPATION CM Explain: Metal 12:25 30.41 ANALYSIS REQUESTED <u>E</u> 1111 E E 5.27-11 7/07/11 Sate Date Date age PCB Pest√ 8×3 ORGANIC **BNA** ΥÖΛ CLIENT: **Description** Containers H 4 Total No. of Sample Container (Signature) leceived by: (Signature) Received by: (Signature) 105mm URSCORP 14.06 15:57 575 Broad Hollow Rd, Melville, NY 11747-5076 E L Time FIELD I.D. がより Tel: (631) 694-3040 Fax: (631) 420-8436 5-27-11 Date Sate オタファク HIMM735 HIMESON I LIMIN T TURNAROUND TIME: ANDAZO 383 35 3 The HEMPSTOAD NY 43 X ERS: (stgoature)/Client PROJECT NAME/NUMBER MATRIX 30 SW 10 900 G W BBOKN THO THE Relinquished by: (Signature) Relinquished by: (Signature) DELIVERABLES: 1330 2 0925 DATE TIME 200

WHITE GORY 20 BRIGINAL

YELLOW COPY - CLIENT

PINK COPY - LABORATORY



H2M LABS INC 575 Broad Hollow Road Melville, NY 11747

TEL: 631-694-3040 FAX: 631-420-8436 Website: www.h2mlabs.com Key-URS 120 Sample Receipt Checklist

| Client Name KEY-URS                                         |                    | Date and                     | Time Receive 5/27/2011 3:52:00 P |
|-------------------------------------------------------------|--------------------|------------------------------|----------------------------------|
| Work Order Numbe 1105B49 RcptNo: 1                          |                    | Received                     | by Tamika Ricks                  |
| Completed by                                                | Pay                | viewed by:                   | A-                               |
| - Kla7/II                                                   |                    | <11                          |                                  |
| Completed Date: 5/27/11                                     | Rev                | viewed Date: 6               | 1110                             |
| Carrier name <u>H2M Pickup</u>                              |                    |                              |                                  |
| Chain of custody present?                                   | Yes 🗹              | No 🗔                         |                                  |
| Chain of custody signed when relinquished and received?     | Yes 🗹              | No                           |                                  |
| Chain of custody agrees with sample labels?                 | Yes 🗸              | No                           | Not Presen                       |
| Are matrices correctly identified on Chain of custody?      | Yes 🗸              | No                           | •                                |
| is it clear what analyses were requested?                   | Yes 🗸              | No 🗔                         | ,                                |
| Custody seals intact on sample bottles?                     | Yes 🛄              | No 🗔                         | Not Presen                       |
| Samples in proper container/bottle?                         | Yes 🗹              | No 🗀                         |                                  |
| Were correct preservatives used and noted?                  | Yes 🗹              | No 🗔                         | <b>!</b>                         |
| Sample containers intact?                                   | Yes 🗹              | No 🗀                         | 1                                |
| Sufficient sample volume for indicated test?                | Yes 🗹              | No 🗀                         |                                  |
| Were container lables complete (ID, Pres, Date)?            | Yes 🗹              | No 🗌                         | <b>:</b>                         |
| All samples received within holding time?                   | Yes 🗹              | No 🗀                         | :                                |
| Was an attempt made to cool the samples?                    | Yes 🔽              | No 🗀                         | ·                                |
| All samples received at a temp. of > 0° C to 6.0° C?        | Yes 🛄              | No 🗹                         |                                  |
| Response when temperature is outside of range:              |                    |                              | :                                |
| Preservative added to bottles:                              |                    | *                            |                                  |
| Sample Temp. taken and recorded upon receipt?               | Yes 🗸              | No 🛄                         | To 11.6°                         |
| Water - Were bubbles absent in VOC vials?                   | Yes 🗹              | No 🗌                         | No Vials                         |
| Water - Was there Chlorine Present?                         | Yes 🗌              | No 🗔                         | NA 🗹                             |
| Water - pH acceptable upon receipt?                         | Yes 🗹              | No 🗀                         | No Water                         |
| Are Samples considered acceptable?                          | Yes 🗹              | No 🗀                         |                                  |
| Custody Seals present?                                      | Yes                | No 🗹                         |                                  |
| Traffic Report or Packing Lists present?                    | Yes []             | No 🗹                         | :                                |
| Airbill or Sticker?                                         | Air Bill           | Sticker                      | Not Present                      |
| Airbill No:                                                 |                    |                              |                                  |
| Sample Tags Present?                                        | Yes                | No 🗹                         |                                  |
| Sample Tags Listed on COC?                                  | Yes 🗔              | No <table-cell></table-cell> |                                  |
| Tag Numbers:                                                |                    |                              |                                  |
| Sample Condition?                                           | Intact 🗸           | Broken                       | Leaking                          |
| Case Number: SDG:                                           | S                  | SAS:                         |                                  |
| KEY-URS120                                                  | · ·                |                              |                                  |
|                                                             |                    |                              | <b>a</b>                         |
|                                                             | Adj                | justed?                      | Checked b                        |
| Any No and/or NA (not applicable) response must be detailed | in the comments se | ction be                     |                                  |
|                                                             |                    |                              |                                  |

LABS, INC.

20404

575 Broad Hollow Rd, Melville, NY 11747-5076

Tel: (631) 694-3040 Fax: (631) 420-8436

SELECT CRO PROJECT NAME/NUMBER TOWNERD

ES ES. 大人 つまろの SAMPLERS: (signature)/Citen

716 350 5636

Phone Number:

MARCHY

PIS/Quote #

REMARKS:

LABILD, NO.

CM

Metal

Post

AN8 ADV

ORGANIC

Containers

to .oN lasoT

62

, 高 (a)

KEUN CONTRE

Project Contact

NOTES:

CRPORTION

CLIENT:

H2M SDG NO:

**EXTERNAL CHAIN OF CUSTODY** 

DELIVERABLES:

ANALYSIS REQUESTED

r, 1460

Description

Sample Container

TURNAROUND THE CONTE

HIM W DATE | TIME |MATRIX <u> প</u>্যতা দুন 3 1045

FIELD I.D. 14 WM 142 上京とと上 3

DP 11053

t

2450 1×5 3

Received by: (Signature)

15.02

18/3

CS.SI

P

Romis (Signature)

Relinquished by: (Signature)

5-31-11

WHITE GRBY 20 GRIGINAL

YELLOW COPY - CLIENT

PINK COPY - LABORATORY

1. Present on outer package: Y o(N)
2. Unbroken on outer package: Y or NC) A
8.COC record present & complete upon sample receipt:
Yor N

1. Shipped or Hand Delivered
2. Ambient or chilled, Temp (C.S.)
3. Received in good condition: Y or

LABORATORY USE ONLY

Discrepancies Between

15.02

5-31-11

COC Record? Yor N

15:52

11/B/

Explain:

<u>8</u>

Date

Received by: (Signature)

E E

Date

Refinquished by: (Signature)

Sample Labels and

4. Property preserved: Yor N

COC Tape was:

# H2M LABS, INC.

# SDG NARRATIVE FOR VOLATILE ORGANICS SAMPLES RECEIVED: 6/2/11 & 6/3/11 SDG #: KEY-URS126

For Sample(s):

HIMW-5S

HIMW-8D

HIMW-8I

HIMW-8S

HIMW-12D

FB

HIMW-20S

HIMW-20I

The above sample(s) was/were analyzed for a select list of volatile organic analytes by EPA method 8260B.

All QC data and calibrations met the requirements of the method, unless discussed below, and no problems were encountered with sample analysis. The following should be noted:

Sample HIMW-5S was analyzed as the matrix spike/matrix spike duplicate. All percent recoveries and RPDs were met.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Date Reported: June 27, 2011

\*\*\*\*\*\*

Joann M. Slavin Senior Vice President

# H2M LABS, INC.

# SDG NARRATIVE FOR SEMIVOLATILE ORGANICS SAMPLES RECEIVED: 6/2/11 & 6/3/11 SDG #: KEY-URS126

For Sample(s):

HIMW-5S

HIMW-8D

HIMW-8I

HIMW-8S

HIMW-12D

FB

HIMW-20S

HIMW-20I

The above sample(s) was/were analyzed for a select list of semivolatile organic analytes by EPA method 8270C.

All QC data and calibrations met the requirements of the method unless discussed below, and no problems were encountered with sample analysis. The following should be noted:

Sample HIMW-5S was analyzed as the matrix spike. All percent recoveries and RPDs were met. Lab fortified blanks were analyzed and indicate good method efficiency.

Sample HIMW-20I was reanalyzed at a dilution due to concentration levels of targeted analytes above the calibration range. Both sets of data are submitted.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Date Reported: June 27, 2011

Joann M. Slavin

Senior Vice President

3040C

**EXTERNAL CHAIN OF CUSTODY** 

HZM LABS, INC. 575 Broad Hollow Rd, Melville, NY 11747-5076

| Tel: (631) 694-3040 Fax: (631) 420-8436                                 | CLIENT:          |          | Q           | 200                | CORPORATION | 7                         |                                     | H2M SDG                                                          | HZM SDG NO: YEN-UPS 176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------|------------------|----------|-------------|--------------------|-------------|---------------------------|-------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PROJECT NAME/NUMBER                                                     |                  |          | _           |                    |             |                           | NOTES:                              |                                                                  | Project Contact:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CATOR CRO                                                               |                  |          |             |                    |             |                           |                                     |                                                                  | KEVAL CANAR (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Hemorea o                                                               | istno:<br>noliqi |          | ·           |                    |             | :                         |                                     |                                                                  | Phone Number:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SAMPLERS: (signature)/Client                                            | mple (           | `        |             | <del></del>        |             |                           |                                     |                                                                  | 716 836 5E36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| D. S. S. D. M. L. B. C. B. C. B. C. | <b>8</b> S       | H.2      | <del></del> |                    |             |                           |                                     |                                                                  | PISIQuote #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DELIVERABLES:                                                           | <u>†</u>         | 17)      |             |                    |             |                           |                                     |                                                                  | 2 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| STANDARD                                                                | to .o.           | AN       | ALYSIS      | ANALYSIS REQUESTED | STED        |                           |                                     |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TURNAROUND TIME: SIFT-LOARD.                                            | Otal N<br>Contal | ORGANIC  |             |                    |             | INORG.                    |                                     |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DATE TIME MATRIX FIELD I.D.                                             | >                | VOV ,    | Pest        |                    |             | Wetal                     | LAB I.D. NO.                        | D. NO.                                                           | REMARKS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (12/11 109x164) HIMW 80                                                 | 4                |          |             |                    |             |                           | 1110011                             | 700-1                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6/2/11 1000 GW 1 F.B                                                    | 4                | 7        |             |                    |             |                           |                                     | 2000                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| GOU TOUSEN HIMUSE                                                       | +                | 1        |             |                    |             | -                         |                                     | -003                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 444 1210 GW HIMW 85                                                     | 1                | 1        |             |                    |             |                           | <b>→</b>                            | 2004                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                         |                  |          |             |                    |             |                           |                                     |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| •                                                                       |                  |          |             |                    |             | 40.50                     |                                     |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                         |                  |          |             |                    |             |                           |                                     |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                         |                  |          |             |                    |             |                           |                                     |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                         |                  |          |             |                    |             | prince.                   |                                     |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                         |                  |          |             |                    |             |                           |                                     |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Tremperial pool of the Received by: (Signature)                         | ( <u>)</u>       | <b>1</b> |             |                    | Time        | 22.2                      | LABOR                               | LABORATORY USE ONLY                                              | ILY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1 17:00                                                                 | - 1.             | }        | 0           | 1 11.50            | 4.50        | Discrep                   | Discrepancies Between               | Samples were:                                                    | `                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Tetra lime Necessary                                                    | <u>§</u>         |          | € °         |                    | Time<br>537 | Sample Labels COC Record? | Sample Labels and COC Record? Yor N | 2. Amblent orichited, Temp ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( | 1. Simpson American Desiversed American Statement or American Statement or American Statement of American Stat |
| Neuroquished by: (signature) Uate Imme Necewed by: (signature           | ( <b>e</b> m     |          |             | Date               | Time        |                           |                                     | T. Frehany preserve                                              | wat John                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Relinquished by: (Signature) Date Time Received by: (Signature)         | (sa)             |          | -           | Date               | e Li        |                           |                                     | 1. Present on outer                                              | COC Tape was: 1. Present on outer package: Y o(N) 2. Unbruien on outer package: Y o(N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                         |                  |          |             |                    | T STATE OF  |                           |                                     | 3 COC record pres                                                | COC record present & complete upon sample receipt.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

WHITE GRBY Z6 OFFIGINAL

YELLOW COPY - CLIENT

PINK COPY - LABORATORY

# HZM LABS, INC.

36463

| , NY 11747-50   | 420-8436            |
|-----------------|---------------------|
| Rd, Melville    | 694-3040 Fax: (631) |
| 75 Broad Hollow | el: (631) 694       |

PROJECT NAME/NUMBER

|               |           | Š                            |
|---------------|-----------|------------------------------|
|               |           | S                            |
| NATIONAL GRID | HEMPSTEMD | SAMPLERS: (signature)/Cilent |

|            | S<br>S<br>S |
|------------|-------------|
|            | Š           |
| lent A     |             |
| gnature)/C | <b>₹</b> 7: |
| PLERS: (s  | \$ 0.0      |

| URS CORP      |   |
|---------------|---|
| ature folient | , |

|              | 5,12 |
|--------------|------|
|              | 2    |
| olqmi<br>soQ | s    |

cubgou Container

76 856 5636.

Phone Number:

8609£111

PIS/Quote #

KENN GNINGE

HZM SDG NO: KEY-UNS 17 LE

NOTES

CARRETER

CLIENT:

**EXTERNAL CHAIN OF CUSTODY** 

|            | 5,7460   |
|------------|----------|
|            | Brek     |
| <b>2</b> 0 | <b>A</b> |

|          | ANALYSIS REQUESTED |
|----------|--------------------|
|          |                    |
|          | Sis                |
|          | ¥                  |
| 10       | ৰ                  |
| 19       |                    |
| <b>A</b> | CIONHI             |

|   | SIS  |               | L  |
|---|------|---------------|----|
|   | -:1  | ပ             | Q: |
|   | ANA  | SANIC         | \$ |
|   |      | ORG/          | ΥĊ |
|   |      | <b>a</b> tno⊃ |    |
| 1 | 10.0 | N Isto        | Τ_ |

TURNAROUND TIME: STANCOGOD

**JELIVERABLES**:

|         |             | l |
|---------|-------------|---|
|         |             | Ī |
| ပ       | PCB<br>Post | Ī |
| ORGANIC | ANB         | k |
| ğ       | AQV         |   |
|         |             | r |

| 3  | Pest |    |
|----|------|----|
| Š  | ANB  |    |
| 5  | AQV  | 1  |
| ·- |      | Γ. |

CM

Metal

INORG.

|   | PCB<br>Pest |   |
|---|-------------|---|
|   | ANB         |   |
|   | YOV         | 1 |
| _ |             |   |

| l |             |  |
|---|-------------|--|
|   | bcs<br>best |  |
|   | ANB         |  |
|   | AQV         |  |
| , |             |  |

| l |             |   |
|---|-------------|---|
|   | PCB<br>Pest |   |
|   | ANB         |   |
|   | AQV         | 7 |
|   |             |   |

FIELD I.D.

MATRIX

TIME

DATE

350000

| PCB<br>PcB | - |
|------------|---|
| ANB        |   |
| AQV        | V |
|            |   |

REMARKS:

1106129-001 LAB I.D. NO.

THE ST るとは

> 3 Z

コミュ 3

Onco SPER

MO

-005

10.53

Received by: (Signature)

<u>≘</u>

623.4

by: (Signature)

Relinquished by: (Signature)

1. Shipped or Hand Delivered Air 2. Ambient or chilley, Temp 6 3. Received in good condition; Yor N 4. Property preserved (Tor N

COC Record? Yor N

Explain:

LABORATORY USE ONLY

Discrepancies Between

92.61

Sample Labels and

1537 E Z Date

88

Received by: (Signature)

emi-

Date

Relinquished by: (Signature)

COC Tape was:

1. Present on outbr package: Yo(N)
2. Unbroken on outer package: Yo(N)
3. COC record present & complete upon sample receipt: Yoy N

PINK COPY - LABORATORY

YELLOW COPY - CLIENT

WHITE GREY 26 GRIGINAL



labs

H2M LABS INC 575 Broad Hollow Road Melville, NY 11747 TEL: 631-694-3040 FAX: 631-420-8436

Website: www.h2mlabs.com

Key-URS 126

# Sample Receipt Checklist

Client Name KEY-URS Date and Time Receive 6/2/2011 3:37:00 PM Work Order Numbe 1106129 RcptNo: 1 Received by MelissaWatson Completed by Reviewed by: Completed Date: Reviewed Date: Carrier name H2M Pickup Chain of custody present? Yes 🗸 No ... Chain of custody signed when relinquished and received? Yes 🗸 No 🗌 Chain of custody agrees with sample labels? ~ No Not Presen Are matrices correctly identified on Chain of custody? Yes 🗸 No : is it clear what analyses were requested? Yes 🗸 No ... Custody seals intact on sample bottles? Yes Not Presen Samples in proper container/bottle? **V** No <sup>1</sup> Were correct preservatives used and noted? Yes 🗸 No . Sample containers intact? Yes No ... Sufficient sample volume for indicated test? Yes 🗸 No Were container lables complete (ID, Pres, Date)? Yes 🗸 No 🗌 All samples received within holding time? Yes 🗸 No Was an attempt made to cool the samples? Yes 🗸 No 🛄 All samples received at a temp. of > 0° C to 6.0° C? Yes [] No 🗸 Response when temperature is outside of range: Preservative added to bottles: Sample Temp. taken and recorded upon receipt? Yes 🛂 No L. 6 To Water - Were bubbles absent in VOC vials? Yes No ... No Vials Water - Was there Chlorine Present? Yes No 🗔 NA Water - pH acceptable upon receipt? Yes 🛂 No 🗔 No Water Are Samples considered acceptable? Yes 🗸 No 🗌 **Custody Seals present?** Yes No 🗹 Traffic Report or Packing Lists present? Yes [ No 🗸 Airbill or Sticker? Air Bili Sticker Not Present Y Airbill No: Sample Tags Present? No 🗸 Sample Tags Listed on COC? Tag Numbers: Sample Condition? Intact 🗸 Broken Case Number: SDG: SAS: KEY-URS126 Adjusted? Any No and/or NA (not applicable) response must be detailed in the comments section be

**EXTERNAL CHAIN OF CUSTODY** 

36461

575 Broad Hollow Rd, Melville, NY 11747-5076
Tel: (631) 694-3040 Fax: (631) 420-927-

| S GRACEATION HIZM SDG NO: KEY-WRSIZE  | NOTES:                                | 71.6 83.0 S6360 PISSQUOTE #                | ANALYSIS BEOLIESTED | INORG            | Metal C LABID.NO. REMARKS: | 1106191-101                           | 200-         |    |  |  |   |   |   | <del> </del>                | 14.10 Discrepancies Between Samples were: | Date Time Sample Labels and Confident Park Demonstration (1977) 14/19 14/24 COC Record? Yor N 3. Received in Good condition: Str. N | Explain:                     |   |
|---------------------------------------|---------------------------------------|--------------------------------------------|---------------------|------------------|----------------------------|---------------------------------------|--------------|----|--|--|---|---|---|-----------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---|
|                                       |                                       | ()H/                                       | ANA KRIS            | ANIC             | bcs<br>Seat                | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | _            |    |  |  |   |   |   |                             | ٩                                         |                                                                                                                                     | -                            | - |
| L                                     |                                       | Zež                                        | Ž/                  | ORGANIC          | ΑÖΛ                        | Ĭ                                     |              | -2 |  |  |   |   |   | 1                           | 5                                         | i                                                                                                                                   |                              |   |
| CLIENT:                               | e Container<br>scription              |                                            |                     | oM lato          |                            | 7                                     | 7            |    |  |  |   |   |   | neture)                     |                                           |                                                                                                                                     | (eunje                       |   |
| 8436                                  | ·                                     | uzs coep                                   |                     | 9.               | FIELD I.D.                 | 205                                   | Tol          |    |  |  |   | - |   |                             | +                                         | 6.3-11 15.35                                                                                                                        | Ite Received by: (Signature) |   |
| Fax: (631) 420-                       | L'RLD<br>NY                           | 2                                          |                     | STANDARD         |                            | HIMM.                                 | MWIT         | ,  |  |  | · |   | • | Date CO                     |                                           | 13 13 13 13 13 13 13 13 13 13 13 13 13 1                                                                                            | Date                         | - |
| Tel:(631) 694-3040 Fax:(631) 420-8436 | PROJECT NAMENUMBER NATIONAL HEMPSTOAD | SAMPLERS: (signature)/Cilen<br>D. Ów/And M | DELIVERABLES:       | TURNARQUND TIME: | DATE TIME MATRIX           | 1 B-35                                | 13/11 Pg. GW |    |  |  |   |   |   | Refinguished by (Styrature) | Relinquished by (Signature)               | ٠,                                                                                                                                  | Refinquished by: (Signature) |   |

WHITE GREPY26 GRIGINAL

YELLOW COPY - CLIENT

PINK COPY - LABORATORY



H2M LABS INC 575 Broad Hollow Road Melville, NY 11747 TEL: 631-694-3040 FAX: 631-420-8436

Website: www.h2mlabs.com

Key-URS 126 Sample Receipt Checklist

| Client Name KEY-URS                     |                             | · · · · ·  |              | Date and          | Time Receive 6    | /3/2011  | 3:35:00 PM |
|-----------------------------------------|-----------------------------|------------|--------------|-------------------|-------------------|----------|------------|
| Work Order Numbe 1106191                | RcptNo: 1                   |            |              | Received I        | by Tamika Rick    | s :      |            |
| ( ) { \( \sigma^{\chi} \)               | ·                           |            |              |                   | 1                 |          |            |
| Completed by                            |                             |            | Revie        | wed by:           | A-                |          |            |
| Completed Date: 6/3/11                  | -                           |            | Revie        | wed Date:         | 711               | 1        |            |
| Carrier name H2M Pickup                 |                             |            |              | `                 | 1                 | :        |            |
| Chain of custody present?               | •                           | Yes        | V            | No 🗔              |                   | :        |            |
| Chain of custody signed when relinqu    | ished and received?         | Yes        | $\checkmark$ | No 🗔              |                   |          |            |
| Chain of custody agrees with sample     | labels?                     | Yes        | V            | No 🗔              | Not Presen        |          |            |
| Are matrices correctly identified on C  | hain of custody?            | Yes        | V            | No 🗔              |                   |          |            |
| Is it clear what analyses were reques   | ted?                        | Yes        | V            | No 🗀              |                   |          |            |
| Custody seals intact on sample bottle   | s?                          | Yes        | П            | No [_]            | Not Presen        | ✓        |            |
| Samples in proper container/bottle?     |                             | Yes        | V            | No 🖂              | ,1011 100011      |          |            |
| Were correct preservatives used and     | noted?                      | Yes        | -            | No 🗌              |                   |          |            |
| Sample containers intact?               |                             | Yes        | <b>V</b>     | No 🗌              |                   |          |            |
| Sufficient sample volume for indicated  | test?                       | Yes        | <b>7</b>     | No 🗀              |                   |          |            |
| Were container lables complete (ID, F   | Pres, Date)?                | Yes        | V            | No 🗔              |                   |          |            |
| All samples received within holding tir | me?                         | Yes        | <b>Y</b>     | No 🗀              |                   | :        |            |
| Was an attempt made to cool the san     | nples?                      | Yes        | ✓            | No .              |                   |          |            |
| All samples received at a temp. of > 0  | 0° C to 6.0° C?             | Yes        | 1            | No 🗸              |                   |          |            |
| Response when temperature is outside    | le of range:                | Sample     | s were       | collected the sar | ne day and chille | đ.       |            |
| Preservative added to bottles:          |                             |            |              |                   |                   |          |            |
| Sample Temp, taken and recorded up      | on receipt?                 | Yes        |              | No 🛄              |                   |          |            |
| Water - Were bubbles absent in VOC      | vials?                      | Yes        | M            | No 🗀              |                   |          |            |
| Water - Was there Chlorine Present?     |                             |            |              | No 🗀              |                   | <b>V</b> |            |
| Water - pH acceptable upon receipt?     |                             |            | <b>×</b>     | No 🗀              | No Water          | :        |            |
| Are Samples considered acceptable?      |                             | Yes        |              | No 🗀              |                   |          |            |
| Custody Seals present?                  |                             | Yes        |              | No 🗹              | •                 |          |            |
| Traffic Report or Packing Lists present | t?                          | Yes        |              | No 🗹              |                   |          |            |
| Airbill or Sticker? Airbill No:         |                             | Air Bill   |              | Sticker [         | Not Present       | Y        |            |
| Sample Tags Present?                    |                             | Yes        |              | No 🗹              |                   |          |            |
| Sample Tags Listed on COC?              |                             | Yes        | []           | No 🗹              |                   |          |            |
| Tag Numbers:                            |                             |            |              |                   |                   |          |            |
| Sample Condition?                       |                             | intact     | Z            | Broken            | Leaking           | . •      |            |
| Case Number:                            | SDG:<br>KEY-URS126          |            | SAS          | 3:                |                   | ·        |            |
|                                         |                             |            | Adjus        | ted?              | Che               | cked b   |            |
| Any No and/or NA (not applicable) res   | ponse must be detailed in t | the commer | its secti    | on be             |                   |          |            |

# APPENDIX B OXYGEN SYSTEM OPERATION & MAINTENANCE MEASUREMENTS

# SYSTEM #2

Hempstead Intersection Street Former MGP Site Nassau County, New York

| Wea<br>Outdoor To              | me:<br>ather:<br>emperature:   | 12<br>R<br>~4        | /2011<br>240<br>ain<br>5° F | -<br>-<br>-                         |                              |                      |                |                                   |                              |                      |                                         |  |
|--------------------------------|--------------------------------|----------------------|-----------------------------|-------------------------------------|------------------------------|----------------------|----------------|-----------------------------------|------------------------------|----------------------|-----------------------------------------|--|
|                                | Temperature: med By:           |                      | 5° F<br>e Ryan              | -<br>-                              |                              |                      |                |                                   |                              |                      |                                         |  |
|                                | O <sub>2</sub> Ger             | nerator (Air         | Sep)                        |                                     |                              |                      | Compre         | essor (Kaesar R                   | Rotary Scr                   | ew)                  |                                         |  |
| Hours                          |                                |                      | 3,498                       | _                                   | Compress                     | sor Tank *           | :              |                                   | 110                          |                      | (psi)                                   |  |
| Feed Air Pressu                | ıre *                          |                      | 110                         | (psi)                               |                              |                      | eadings be     | elow are made f                   |                              | ol panel)            |                                         |  |
| Cycle Pressure                 | *                              |                      | 50                          | (psi)                               | Delivery<br>Element (        | Air<br>Outlet Ten    | nperature      |                                   | 120                          |                      | (psi)<br>(°F)                           |  |
| Oxygen Receiv                  | er Pressure *                  |                      |                             | 70<br>(psi)                         | Running Loading 1            |                      |                |                                   | 3,537<br>3,506               |                      | (hours)                                 |  |
| Oxygen Purity * maximum readin | g during loading cyc           | ele                  | 96.7                        | (percent)                           | * maximum                    |                      | ing loading    | cycle                             |                              |                      |                                         |  |
|                                | Injection Ba                   | nk A                 |                             |                                     | Injection Ba                 |                      |                |                                   | Injection                    | Rank C               |                                         |  |
| ID                             | Depth Depth                    | scfh                 | psi                         | ID                                  | Depth Depth                  | scfh                 | psi            | ID                                | Depth                        | scfh                 | psi                                     |  |
| OW-2-2                         | 90.2'                          | 55                   | 28                          | OW-2-9S                             | 75'                          | 30                   | 20             | OW-2-10D                          | 97.2'                        | 50                   | 28                                      |  |
| OW-2-3                         | 94.3'                          |                      |                             |                                     |                              |                      |                |                                   |                              |                      |                                         |  |
|                                | 94.3                           | 85                   | 28                          | OW-2-10S                            | 75'                          | 30                   | 28             | OW-2-11D                          | 100.8'                       | 60                   | 32                                      |  |
| OW-2-4                         | 94.7'                          | 85<br>50             | 28                          | OW-2-10S<br>OW-2-11S                | 75'<br>76.5'                 | 30<br>25             | 28             | OW-2-11D                          | 100.8'<br>94'                | 60<br>55             | 19                                      |  |
| OW-2-4<br>OW-2-5               |                                |                      |                             |                                     |                              |                      |                |                                   |                              |                      | *************************************** |  |
|                                | 94.7'                          | 50                   | 35                          | OW-2-11S                            | 76.5'                        | 25                   | 21             | OW-2-12                           | 94'                          | 55                   | 19                                      |  |
| OW-2-5                         | 94.7'<br>95.3'                 | 50                   | 35                          | OW-2-11S<br>OW-2-13S                | 76.5'<br>75'                 | 25<br>25             | 21             | OW-2-12<br>OW-2-13D               | 94'<br>97'                   | 55                   | 19                                      |  |
| OW-2-5<br>OW-2-6               | 94.7'<br>95.3'<br>95.7'        | 50<br>40<br>45       | 35<br>30<br>30              | OW-2-11S<br>OW-2-13S<br>OW-2-15S    | 76.5'<br>75'                 | 25<br>25<br>35       | 21<br>19       | OW-2-12<br>OW-2-13D<br>OW-2-14    | 94'<br>97'<br>96.4'          | 55<br>50<br>85       | 19<br>34<br>28                          |  |
| OW-2-5<br>OW-2-6<br>OW-2-7     | 94.7'<br>95.3'<br>95.7'<br>96' | 50<br>40<br>45<br>50 | 35<br>30<br>30<br>30        | OW-2-11S OW-2-13S OW-2-15S OW-2-16S | 76.5'<br>75'<br>75'<br>75.5' | 25<br>25<br>35<br>28 | 21<br>19<br>19 | OW-2-12 OW-2-13D OW-2-14 OW-2-15D | 94'<br>97'<br>96.4'<br>94.6' | 55<br>50<br>85<br>40 | 19<br>34<br>28<br>30                    |  |

# SYSTEM #2

Hempstead Intersection Street Former MGP Site Nassau County, New York

|           |                     |                 |                 | 110000                 | County, No   | 711 70111 |     | D :      |           | 4/10/0011 |     |
|-----------|---------------------|-----------------|-----------------|------------------------|--------------|-----------|-----|----------|-----------|-----------|-----|
|           |                     |                 |                 |                        |              |           |     | Date:    |           | 4/12/2011 |     |
|           |                     |                 |                 | O <sub>2</sub> Inje    | ction Syst   | em #2     |     |          |           |           |     |
|           | Injection Ba        | ank D           |                 |                        | Injection Ba | ınk E     |     |          | Injection | Bank F    |     |
| ID        | Depth               | scfh            | psi             | ID                     | Depth        | scfh      | psi | ID       | Depth     | scfh      | psi |
| OW-2-18D  | 95.5'               | 70              | 31              | OW-2-22S               | 76'          | 30        | 19  | OW-2-26D | 95'       | 50        | 38  |
| OW-2-19   | 96.1'               | 30              | 30              | OW-2-24S               | 77.8'        | 40        | 22  | OW-2-27  | 93.5'     | 35        | 28  |
| OW-2-20D  | 96.6'               | 30              | 31              | OW-2-26S               | 74'          | 50        | 18  | OW-2-28D | 92.1'     | 30        | 28  |
| OW-2-21   | 96.6'               | 40              | 29              | OW-2-28S               | 76'          | 50        | 20  | OW-2-29  | 92.2'     | 50        | 29  |
| OW-2-22D  | 96.3'               | 40              | 28              | OW-2-30S               | 67.8'        | 40        | 18  | OW-2-30D | 88'       | 30        | 27  |
| OW-2-23   | 97.2'               | 60              | 27              | OW-2-34                | 71'          | 40        | 19  | OW-2-31  | 86'       | 50        | 39  |
| OW-2-24D  | 97'                 | 40              | 29              | OW-2-35                | 69.2'        | 45        | 23  | OW-2-32  | 84'       | 45        | 42  |
| OW-2-25   | 96'                 | 65              | 28              | OW-2-36                | 64.8'        | 30        | 21  | OW-2-33  | 82'       | 30        | 38  |
| mments: A | All injection point | flows were adju | sted to ~30 sci | h after collecting rea | dings.       |           | ,   | 1        |           |           | •   |
|           |                     |                 |                 | O <sub>2</sub> Inje    | ction Syst   | em #2     |     |          |           |           |     |

|              |                                         |                                                     | O <sub>2</sub> Inje                                                                                                                                                                                                                                                                                    | ction Syst              | em #2            |                                                                                                                                                                                                                                                                                                                                                     |                                              |                                                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------|-----------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Injection Ba | nk G                                    |                                                     |                                                                                                                                                                                                                                                                                                        | Injection Ba            | ank H            |                                                                                                                                                                                                                                                                                                                                                     |                                              | Monitoring                                        | Points Log       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Depth        | scfh                                    | psi                                                 | ID                                                                                                                                                                                                                                                                                                     | Depth                   | scfh             | psi                                                                                                                                                                                                                                                                                                                                                 | ID                                           | DTW                                               | DO (mg/L)        | PID (ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 62.8'        | 40                                      | 19                                                  | OW-2-45                                                                                                                                                                                                                                                                                                | 61.1'                   | 35               | 21                                                                                                                                                                                                                                                                                                                                                  | MP-2-1                                       | 29.07                                             | 15.62            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 62.1'        | 30                                      | 18                                                  | OW-2-46                                                                                                                                                                                                                                                                                                | 61'                     | 40               | 20                                                                                                                                                                                                                                                                                                                                                  | MP-2-2                                       | 30.15                                             | 27.80            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 60'          | 50                                      | 17                                                  | OW-2-47                                                                                                                                                                                                                                                                                                | 60.5'                   | 30               | 19                                                                                                                                                                                                                                                                                                                                                  | MP-2-3S                                      | 30.28                                             | 48.68            | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 61.7'        | 40                                      | 19                                                  |                                                                                                                                                                                                                                                                                                        |                         |                  |                                                                                                                                                                                                                                                                                                                                                     | MP-2-3D                                      | 30.52                                             | 49.10            | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 61.7'        | 40                                      | 18                                                  |                                                                                                                                                                                                                                                                                                        |                         |                  |                                                                                                                                                                                                                                                                                                                                                     | MP-2-4                                       | 19.08                                             | 36.90            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 61.6'        | 40                                      | 18                                                  |                                                                                                                                                                                                                                                                                                        |                         |                  |                                                                                                                                                                                                                                                                                                                                                     | MP-2-5                                       | 17.27                                             | 18.37            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 61.4'        | 35                                      | 19                                                  |                                                                                                                                                                                                                                                                                                        |                         |                  |                                                                                                                                                                                                                                                                                                                                                     |                                              |                                                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 60.6'        | 30                                      | 18                                                  |                                                                                                                                                                                                                                                                                                        |                         |                  |                                                                                                                                                                                                                                                                                                                                                     |                                              |                                                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|              | Depth 62.8' 62.1' 60' 61.7' 61.6' 61.4' | 62.8' 40 62.1' 30 60' 50 61.7' 40 61.6' 40 61.4' 35 | Depth         scfh         psi           62.8'         40         19           62.1'         30         18           60'         50         17           61.7'         40         19           61.7'         40         18           61.6'         40         18           61.4'         35         19 | Depth   scfh   psi   ID | Injection Bank G | Depth         scfh         psi         ID         Depth         scfh           62.8'         40         19         OW-2-45         61.1'         35           62.1'         30         18         OW-2-46         61'         40           60'         50         17         OW-2-47         60.5'         30           61.7'         40         19 | Depth   Scfh   psi   ID   Depth   Scfh   psi | Depth   Scfh   psi   ID   Depth   Scfh   psi   ID | Injection Bank G | Injection Bank G         Injection Bank H         Monitoring Points Log           Depth         sefh         psi         ID         Depth         sefh         psi         ID         DTW         DO (mg/L)           62.8'         40         19         OW-2-45         61.1'         35         21         MP-2-1         29.07         15.62           62.1'         30         18         OW-2-46         61'         40         20         MP-2-2         30.15         27.80           60'         50         17         OW-2-47         60.5'         30         19         MP-2-3S         30.28         48.68           61.7'         40         19         INP-2-4         19.08         36.90           61.6'         40         18         INP-2-4         19.08         36.90           61.4'         35         19         INP-2-5         17.27         18.37 |

Comments: All injection point flows were adjusted to ~30 scfh after collecting readings. CNL = Could not locate due to snow and ice.

# SYSTEM #2

Hempstead Intersection Street Former MGP Site Nassau County, New York

|                                                             |                                  | Date:                               | 4/12/2011                    |
|-------------------------------------------------------------|----------------------------------|-------------------------------------|------------------------------|
|                                                             | ODED A TIONAL MOTEC              |                                     |                              |
| GA5 Air Compressor                                          | OPERATIONAL NOTES                |                                     |                              |
| 1) Oil Level Checked with system unloaded*                  |                                  | Yes X N                             | lo                           |
| * Unload system, wait until Delivery Air Pro                | assura is loss than 0 nsi        | res                                 |                              |
|                                                             | essure is less than 9 psi        |                                     |                              |
| 2) Oil Level with system unloaded                           | N 1/                             | W II 1 (                            |                              |
| Low (red)                                                   | Normal (green)                   | X High (orange)                     |                              |
| 3) Oil added                                                | Yes                              | No X                                |                              |
| 4) Oil changed                                              | Yes                              | No X                                |                              |
| 5) Oil filter changed                                       | Yes                              | No X                                |                              |
| 6) Air filter Changed                                       | Yes                              | No X                                | _                            |
| 7) Oil separator changed                                    | Yes                              | No X                                |                              |
| 8) Terminal strips checked                                  | Yes X                            | No                                  | _                            |
| AS-80 O <sub>2</sub> Generator                              |                                  |                                     |                              |
| 1) Prefilter changed                                        | Ves                              | No X                                |                              |
| 2) Coalescing changed                                       | Yes<br>Yes                       | No X                                |                              |
| 2) Coalescing changed                                       | 168                              | NO A                                |                              |
|                                                             | GENERAL SYSTEM NOTE              | S                                   |                              |
| T                                                           |                                  |                                     |                              |
| Trailer                                                     |                                  | 1- )                                |                              |
| 1) Performed general housekeeping (i.e. sweep               |                                  |                                     |                              |
|                                                             | Yes X                            | No                                  | _                            |
|                                                             |                                  |                                     |                              |
| 2) Abnormal conditions observed (e.g. vandalis              | sm                               |                                     |                              |
|                                                             |                                  |                                     |                              |
| 2) Other major activities commisted                         |                                  |                                     |                              |
| 3) Other major activities completed                         |                                  |                                     |                              |
|                                                             |                                  |                                     |                              |
| 4) Supplies needed                                          |                                  |                                     |                              |
| i) supplies needed                                          |                                  |                                     |                              |
|                                                             |                                  |                                     |                              |
| 5) Visitors                                                 |                                  |                                     |                              |
|                                                             |                                  |                                     |                              |
|                                                             |                                  |                                     |                              |
| Record routine activities such as any alarm/shutdowns, s    |                                  |                                     |                              |
| transported off-site, oil/filter/gasket and/or any other ab | normal operating conditions:     |                                     |                              |
|                                                             |                                  |                                     |                              |
| Alarm Code 0102 occurred on Saturday, March 26, 2011 at     | 1200AM. The alarm condition      | was for the compressor motor tripp  | oing out the breaker when it |
| restarts to charge the air tanks. On Monday, March 28, 2013 | 1 F&N troubleshot the problem    | and pulled and reset all of the pow | er wires on the compressor   |
| contacts to ensure that they we making accurate contact. Up | oon completion of this wire test | , the system was restarted and moni | tored over the course of the |
| week and the system operated without faults. Total downtin  |                                  |                                     |                              |
|                                                             |                                  |                                     |                              |
| On Tuesday, April 5, 2011, F&N performed the 6-month ma     | aintenace on all system compor   | nents as specifed in the O&M manua  | al.                          |
|                                                             |                                  |                                     |                              |
| Cleaned up leaves around shed and fence enclosure.          |                                  |                                     |                              |
|                                                             |                                  |                                     |                              |
| Action Items:                                               |                                  |                                     |                              |
|                                                             |                                  |                                     |                              |

# SYSTEM #2

Hempstead Intersection Street Former MGP Site Nassau County, New York

|                                           | ate:                          |                                | /2011                            | _                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                  |                                                     |                                  |                        |                                  |
|-------------------------------------------|-------------------------------|--------------------------------|----------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------|-----------------------------------------------------|----------------------------------|------------------------|----------------------------------|
|                                           | me:                           |                                | 231                              | _                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                  |                                                     |                                  |                        |                                  |
|                                           | ather:                        |                                | ain                              | _                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                  |                                                     |                                  |                        |                                  |
|                                           | emperature:                   |                                | 4° F                             | _                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                  |                                                     |                                  |                        |                                  |
|                                           | r Temperature:                |                                | 2° F                             | _                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                  |                                                     |                                  |                        |                                  |
| Perforr                                   | ned By:                       | Mike                           | e Ryan                           | _                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                  |                                                     |                                  |                        |                                  |
|                                           | O Cor                         | nerator (Air                   | (Son)                            |                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       | Compa                            | oggon (Vocacan I                                    | Datawa Car                       |                        |                                  |
|                                           | O <sub>2</sub> Gei            | iciatoi (Ali                   | Scp)                             |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | Compre                           | essor (Kaesar I                                     | Cotary Sci                       | rew)                   |                                  |
| Hours                                     |                               |                                | 3,781                            | _                                                    | Compress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | sor Tank <sup>*</sup> | k                                |                                                     | 100                              |                        | (psi)                            |
| Feed Air Pressu                           | ıre *                         |                                | 79                               | (psi)                                                | Delivery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | eadings be                       | elow are made f                                     | rom contro                       | ol panel)              | (psi)                            |
| Cycle Pressure                            | *                             |                                | 70                               | (psi)                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Outlet Ter            | nperature                        |                                                     | 171                              |                        | (°F)                             |
| Oxygen Receiv                             | er Pressure *                 |                                |                                  | 55                                                   | Running                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Hours                 |                                  |                                                     | 3,829                            |                        | (hours)                          |
|                                           |                               |                                |                                  | (psi)                                                | Loading l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Hours                 |                                  |                                                     | 3,792                            | •                      | (hours)                          |
|                                           |                               |                                |                                  |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                  |                                                     |                                  |                        |                                  |
|                                           |                               |                                |                                  |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                  |                                                     |                                  |                        |                                  |
|                                           |                               |                                |                                  |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                  |                                                     |                                  |                        |                                  |
| Oxygen Purity                             |                               |                                | 96.6                             | _(percent)                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                  |                                                     |                                  |                        |                                  |
| * maximum readin                          | g during loading cyc          | ele                            |                                  | 0.1.                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | ring loading                     | cycle                                               |                                  |                        |                                  |
|                                           |                               |                                |                                  | O <sub>2</sub> Inte                                  | ction Syst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | em #2                 |                                  |                                                     |                                  |                        |                                  |
|                                           | T 1 (1 T)                     |                                |                                  |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                  |                                                     | Ŧ                                | D 1 C                  |                                  |
| ID                                        | Injection Ba                  |                                | ngi                              |                                                      | Injection Ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ank B                 | nei                              | ID                                                  | Injection                        |                        | nei                              |
| ID                                        | Injection Ba                  | nk A<br>scfh                   | psi                              |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | psi                              | ID                                                  | Injection<br>Depth               | Bank C                 | psi                              |
| ID OW-2-2                                 | 1                             |                                | psi<br>28                        |                                                      | Injection Ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ank B                 | <b>psi</b> 20                    | ID OW-2-10D                                         |                                  |                        | psi 28                           |
|                                           | Depth                         | scfh                           |                                  | ID                                                   | Injection Ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ank B                 |                                  |                                                     | Depth                            | scfh                   |                                  |
| OW-2-2                                    | <b>Depth</b> 90.2'            | scfh 40                        | 28                               | ID OW-2-9S                                           | Depth 75'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | scfh 30               | 20                               | OW-2-10D                                            | 97.2'                            | scfh<br>60             | 28                               |
| OW-2-2                                    | 90.2'<br>94.3'                | scfh           40           90 | 28                               | ID<br>OW-2-9S<br>OW-2-10S                            | Tnjection Ba Depth 75' 75'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | scfh 30 30            | 20 28                            | OW-2-10D                                            | 97.2'<br>100.8'                  | 60<br>65               | 28                               |
| OW-2-2<br>OW-2-3<br>OW-2-4                | 90.2'<br>94.3'<br>94.7'       | 90<br>40                       | 28<br>32<br>36                   | ID  OW-2-9S  OW-2-10S  OW-2-11S                      | Injection Ba   Depth     75'       75'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30 30 25              | 20 28 21                         | OW-2-10D<br>OW-2-11D<br>OW-2-12                     | 97.2'<br>100.8'<br>94'           | 60<br>65<br>45         | 28<br>33<br>21                   |
| OW-2-2<br>OW-2-3<br>OW-2-4<br>OW-2-5      | 90.2' 94.3' 94.7' 95.3'       | sefh 40 90 40 50               | 28<br>32<br>36<br>30             | OW-2-98 OW-2-108 OW-2-118 OW-2-138                   | Depth   75'   75'   76.5'   75'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30 30 25 28           | 20<br>28<br>21<br>19             | OW-2-10D OW-2-11D OW-2-12 OW-2-13D                  | 97.2' 100.8' 94' 97'             | sefh 60 65 45 90       | 28<br>33<br>21<br>27             |
| OW-2-2 OW-2-3 OW-2-4 OW-2-5 OW-2-6        | 90.2' 94.3' 94.7' 95.3'       | scfh 40 90 40 50               | 28<br>32<br>36<br>30<br>31       | OW-2-9S OW-2-10S OW-2-11S OW-2-13S OW-2-15S          | Injection Ba   Depth     75'       75'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30 30 25 28 40        | 20<br>28<br>21<br>19<br>20       | OW-2-10D OW-2-11D OW-2-12 OW-2-13D OW-2-14          | 97.2' 100.8' 94' 97' 96.4'       | scfh 60 65 45 90 64    | 28<br>33<br>21<br>27<br>28       |
| OW-2-2 OW-2-3 OW-2-4 OW-2-5 OW-2-6 OW-2-7 | 90.2' 94.3' 94.7' 95.3' 95.7' | scfh 40 90 40 50 50            | 28<br>32<br>36<br>30<br>31<br>30 | OW-2-9S OW-2-10S OW-2-11S OW-2-13S OW-2-15S OW-2-16S | Injection Ba   Depth   75'   75'   76.5'   75'   75'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5' | 30 30 25 28 40 30     | 20<br>28<br>21<br>19<br>20<br>20 | OW-2-10D OW-2-11D OW-2-12 OW-2-13D OW-2-14 OW-2-15D | 97.2' 100.8' 94' 97' 96.4' 94.6' | sefh 60 65 45 90 64 80 | 28<br>33<br>21<br>27<br>28<br>29 |

# SYSTEM #2

Hempstead Intersection Street Former MGP Site Nassau County, New York

|          |                     |                 |                  |                        |              |       |     | Date:    |                   | 4/28/2011            |           |
|----------|---------------------|-----------------|------------------|------------------------|--------------|-------|-----|----------|-------------------|----------------------|-----------|
|          |                     |                 |                  | O <sub>2</sub> Inje    | ction Syst   | em #2 |     |          |                   |                      |           |
|          | Injection Ba        | ınk D           |                  |                        | Injection Ba | ınk E |     |          | Injection         | Bank F               |           |
| ID       | Depth               | scfh            | psi              | ID                     | Depth        | scfh  | psi | ID       | Depth             | scfh                 | psi       |
| OW-2-18D | 95.5'               | 60              | 34               | OW-2-22S               | 76'          | 20    | 19  | OW-2-26D | 95'               | 65                   | 39        |
| OW-2-19  | 96.1'               | 30              | 30               | OW-2-24S               | 77.8'        | 30    | 29  | OW-2-27  | 93.5'             | 45                   | 29        |
| OW-2-20D | 96.6'               | 40              | 31               | OW-2-26S               | 74'          | 35    | 19  | OW-2-28D | 92.1'             | 30                   | 28        |
| OW-2-21  | 96.6'               | 40              | 29               | OW-2-28S               | 76'          | 30    | 21  | OW-2-29  | 92.2'             | 45                   | 28        |
| OW-2-22D | 96.3'               | 40              | 28               | OW-2-30S               | 67.8'        | 15    | 18  | OW-2-30D | 88'               | 25                   | 27        |
| OW-2-23  | 97.2'               | 40              | 34               | OW-2-34                | 71'          | 25    | 19  | OW-2-31  | 86'               | 50                   | 39        |
| OW-2-24D | 97'                 | 35              | 29               | OW-2-35                | 69.2'        | 20    | 30  | OW-2-32  | 84'               | 50                   | 40        |
| OW-2-25  | 96'                 | 50              | 28               | OW-2-36                | 64.8'        | 30    | 19  | OW-2-33  | 82'               | 40                   | 37        |
| omments: | All injection point | flows were adju | usted to ~30 scf | h after collecting rea | ndings.      |       | •   | <u> </u> | •                 |                      |           |
|          |                     |                 |                  | 0 = 1                  |              |       |     |          |                   |                      |           |
|          | Introdic D          |                 |                  |                        | ction Syst   |       |     |          | Manitani          | Deints I as          |           |
| ID       | Injection Ba        | scfh            | psi              | ID                     | Injection Ba | scfh  | psi | ID       | Monitoring<br>DTW | Points Log DO (mg/L) | PID (ppm) |

|          |              |      |     | O <sub>2</sub> Inje | ction Syst   | em #2 |     |         |                   |            |           |
|----------|--------------|------|-----|---------------------|--------------|-------|-----|---------|-------------------|------------|-----------|
|          | Injection Ba | nk G |     |                     | Injection Ba | ınk H |     |         | <b>Monitoring</b> | Points Log |           |
| ID       | Depth        | scfh | psi | ID                  | Depth        | scfh  | psi | ID      | DTW               | DO (mg/L)  | PID (ppm) |
| OW-2-37  | 62.8'        | 30   | 20  | OW-2-45             | 61.1'        | 30    | 21  | MP-2-1  | 28.55             | 13.80      | 0         |
| OW-2-38  | 62.1'        | 35   | 19  | OW-2-46             | 61'          | 30    | 20  | MP-2-2  | 29.61             | 33.39      | 0.1       |
| OW-2-39  | 60'          | 30   | 18  | OW-2-47             | 60.5'        | 25    | 20  | MP-2-3S | 29.71             | 39.41      | 0.1       |
| OW-2-40  | 61.7'        | 25   | 20  |                     |              |       |     | MP-2-3D | 29.93             | 39.52      | 0         |
| OW-2-41  | 61.7'        | 25   | 19  |                     |              |       |     | MP-2-4  | 18.46             | 32.39      | 0         |
| OW-2-42  | 61.6'        | 25   | 20  |                     |              |       |     | MP-2-5  | 16.63             | 5.23       | 0         |
| OW-2-43  | 61.4'        | 20   | 20  |                     |              |       |     |         |                   |            |           |
| OW-2-44R | 60.6'        | 30   | 20  |                     |              |       |     |         |                   |            |           |

Comments: All injection point flows were adjusted to ~30 scfh after collecting readings. CNL = Could not locate due to snow and ice.

# SYSTEM #2

Hempstead Intersection Street Former MGP Site Nassau County, New York

|                                                                                                                       |                                             | Date:           | 4/28/2011    |
|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------|--------------|
|                                                                                                                       | OPERATIONAL NOTES                           |                 |              |
| GA5 Air Compressor                                                                                                    | 01 111111111111111111111111111111111111     |                 |              |
| 1) Oil Level Checked with system unloaded*                                                                            |                                             | Yes X N         | Vo           |
| * Unload system, wait until Delivery Air Pre                                                                          | essure is less than 9 psi                   |                 |              |
| 2) Oil Level with system unloaded                                                                                     |                                             |                 |              |
| Low (red)                                                                                                             | Normal (green)                              | X High (orange) | <u></u>      |
| 3) Oil added                                                                                                          | Yes                                         | No X            | <u> </u>     |
| 4) Oil changed                                                                                                        | Yes                                         | No X            |              |
| 5) Oil filter changed                                                                                                 | Yes                                         | No X            | <u> </u>     |
| 6) Air filter Changed                                                                                                 | Yes                                         | No X            |              |
| 7) Oil separator changed                                                                                              | Yes                                         | No X            | _            |
| 8) Terminal strips checked                                                                                            | Yes X                                       | No              | <u> </u>     |
| AS-80 O <sub>2</sub> Generator                                                                                        |                                             |                 |              |
| 1) Prefilter changed                                                                                                  | Yes X                                       | No              |              |
| 2) Coalescing changed                                                                                                 | Yes X<br>Yes                                | No X            |              |
|                                                                                                                       |                                             |                 | <del>_</del> |
|                                                                                                                       | GENERAL SYSTEM NOTES                        |                 |              |
| <u>Trailer</u> 1) Performed general housekeeping (i.e. sweep,                                                         | , collect trash inside and out, etc.  Yes X | )<br>No         |              |
| 2) Abnormal conditions observed (e.g. vandalis                                                                        |                                             |                 |              |
| 3) Other major activities completed                                                                                   |                                             |                 |              |
| 4) Supplies needed                                                                                                    |                                             |                 |              |
| 5) Visitors                                                                                                           |                                             |                 |              |
| Record routine activities such as any alarm/shutdowns, satransported off-site, oil/filter/gasket and/or any other abn |                                             | al              |              |
| ANNAL ANNALUS                                                                                                         |                                             |                 |              |

# SYSTEM #2

Hempstead Intersection Street Former MGP Site Nassau County, New York

|                                           | ate:                          |                                                                       | /2011                            | _                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                                  |                                                     |                                        |                                                                                    |                                  |
|-------------------------------------------|-------------------------------|-----------------------------------------------------------------------|----------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------|-----------------------------------------------------|----------------------------------------|------------------------------------------------------------------------------------|----------------------------------|
|                                           | me:                           |                                                                       | )45                              | _                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                                  |                                                     |                                        |                                                                                    |                                  |
|                                           | ather:                        |                                                                       | ain                              | _                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                                  |                                                     |                                        |                                                                                    |                                  |
|                                           | emperature:                   |                                                                       | 7° F                             | _                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                                  |                                                     |                                        |                                                                                    |                                  |
|                                           | r Temperature:                |                                                                       | 2° F                             | _                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                                  |                                                     |                                        |                                                                                    |                                  |
| Perform                                   | med By:                       | Mike                                                                  | e Ryan                           | _                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                                  |                                                     |                                        |                                                                                    |                                  |
|                                           | O <sub>2</sub> Ger            | nerator (Air                                                          | ·Sep)                            |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | Compre                           | essor (Kaesar F                                     | Rotary Scr                             | ew)                                                                                |                                  |
| Hours                                     |                               |                                                                       | 4,101                            | _                                                    | Compress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | sor Tank *        | :                                |                                                     | 95                                     |                                                                                    | (psi)                            |
| Feed Air Pressu                           | ure *                         |                                                                       | 85                               | (psi)                                                | Dalissams                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   | eadings be                       | elow are made f                                     |                                        | ol panel)                                                                          | (mai)                            |
| Cycle Pressure                            | *                             |                                                                       | 68                               | _(psi)                                               | Delivery<br>Element (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | nperature                        |                                                     | 125<br>171                             |                                                                                    | (psi)<br>(°F)                    |
| Oxygen Receiv                             | er Pressure *                 |                                                                       |                                  | 82                                                   | Running                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Hours             |                                  |                                                     | 4,152                                  |                                                                                    | (hours)                          |
|                                           |                               |                                                                       |                                  | (psi)                                                | Loading l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Hours             |                                  |                                                     | 4,113                                  |                                                                                    | (hours)                          |
|                                           |                               |                                                                       |                                  |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                                  |                                                     |                                        |                                                                                    |                                  |
|                                           |                               |                                                                       |                                  |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                                  |                                                     |                                        |                                                                                    |                                  |
| Oxygen Purity                             |                               |                                                                       | 97.6                             | (percent)                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                                  |                                                     |                                        |                                                                                    |                                  |
|                                           | g during loading cyc          | ele                                                                   |                                  | _(percent)                                           | * maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | reading du        | ring loading                     | cycle                                               |                                        |                                                                                    |                                  |
|                                           |                               |                                                                       |                                  | O <sub>2</sub> Inje                                  | ction Syst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                                  | -                                                   |                                        |                                                                                    |                                  |
|                                           |                               |                                                                       |                                  |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                                  |                                                     |                                        |                                                                                    |                                  |
|                                           | Injection Ba                  | nk A                                                                  |                                  |                                                      | Injection Ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |                                  |                                                     | Injection                              | Bank C                                                                             |                                  |
| ID                                        | Injection Ba                  | nk A<br>scfh                                                          | psi                              |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | psi                              | ID                                                  | Injection<br>Depth                     | Bank C                                                                             | psi                              |
| ID OW-2-2                                 | 1                             |                                                                       | psi 33                           |                                                      | Injection Ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ınk B             | psi 20                           | ID OW-2-10D                                         |                                        |                                                                                    | psi 28                           |
|                                           | Depth                         | scfh                                                                  |                                  | ID                                                   | Injection Ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nnk B<br>scfh     |                                  |                                                     | Depth                                  | scfh                                                                               |                                  |
| OW-2-2                                    | <b>Depth</b> 90.2'            | scfh<br>70                                                            | 33                               | ID OW-2-9S                                           | Depth 75'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | scfh 30           | 20                               | OW-2-10D                                            | <b>Depth</b> 97.2'                     | scfh 25                                                                            | 28                               |
| OW-2-2                                    | 90.2'<br>94.3'                | 70<br>90                                                              | 33                               | OW-2-9S OW-2-10S                                     | Injection Ba Depth 75' 75'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | scfh 30 30        | 20<br>26                         | OW-2-10D<br>OW-2-11D                                | 97.2'<br>100.8'                        | 25<br>50                                                                           | 28                               |
| OW-2-2<br>OW-2-3<br>OW-2-4                | 90.2'<br>94.3'<br>94.7'       | 90<br>50                                                              | 33<br>29<br>36                   | OW-2-9S OW-2-10S OW-2-11S                            | Injection Ba   Depth     75'       75'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30 30 30          | 20<br>26<br>21                   | OW-2-10D<br>OW-2-11D<br>OW-2-12                     | 97.2' 100.8' 94'                       | sefh 25 50 50                                                                      | 28<br>32<br>22                   |
| OW-2-2<br>OW-2-3<br>OW-2-4<br>OW-2-5      | 90.2' 94.3' 94.7' 95.3'       | sefh 70 90 50                                                         | 33<br>29<br>36<br>30             | OW-2-98 OW-2-108 OW-2-118 OW-2-138                   | Injection Ba   Depth   75'   75'   76.5'   75'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30 30 30 25       | 20<br>26<br>21<br>20             | OW-2-10D OW-2-11D OW-2-12 OW-2-13D                  | 97.2' 100.8' 94' 97'                   | scfh           25           50           50           85                           | 28<br>32<br>22<br>27             |
| OW-2-2 OW-2-3 OW-2-4 OW-2-5 OW-2-6        | 90.2' 94.3' 94.7' 95.3' 95.7' | 50<br>50                                                              | 33<br>29<br>36<br>30<br>30       | OW-2-9S OW-2-10S OW-2-11S OW-2-13S OW-2-15S          | Injection Ba   Depth     75'     75'     76.5'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     75'     7 | 30 30 30 25 35    | 20<br>26<br>21<br>20<br>19       | OW-2-10D OW-2-11D OW-2-12 OW-2-13D OW-2-14          | 97.2' 100.8' 94' 97' 96.4'             | sefh 25 50 50 85                                                                   | 28<br>32<br>22<br>27<br>28       |
| OW-2-2 OW-2-3 OW-2-4 OW-2-5 OW-2-6 OW-2-7 | 90.2' 94.3' 94.7' 95.3' 95.7' | scfh           70           90           50           50           40 | 33<br>29<br>36<br>30<br>30<br>29 | OW-2-9S OW-2-10S OW-2-11S OW-2-13S OW-2-15S OW-2-16S | Injection Ba   Depth     75'     75'       76.5'       75'       75'         75.5'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30 30 30 25 35 40 | 20<br>26<br>21<br>20<br>19<br>20 | OW-2-10D OW-2-11D OW-2-12 OW-2-13D OW-2-14 OW-2-15D | Depth 97.2' 100.8' 94' 97' 96.4' 94.6' | scfh           25           50           50           85           90           60 | 28<br>32<br>22<br>27<br>28<br>28 |

# SYSTEM #2

Hempstead Intersection Street Former MGP Site Nassau County, New York

|           |                     |                 |                   | Nassau (               | County, Ne   | ew York |     |          |           |            |           |
|-----------|---------------------|-----------------|-------------------|------------------------|--------------|---------|-----|----------|-----------|------------|-----------|
|           |                     |                 |                   |                        |              |         |     | Date:    |           | 5/13/2011  |           |
|           |                     |                 |                   | O <sub>2</sub> Injec   | ction Syst   | em #2   |     |          |           |            |           |
|           | Injection Ba        | ınk D           |                   |                        | Injection Ba |         |     |          | Injection | Bank F     |           |
| ID        | Depth               | scfh            | psi               | ID                     | Depth        | scfh    | psi | ID       | Depth     | scfh       | psi       |
| OW-2-18D  | 95.5'               | 70              | 33                | OW-2-22S               | 76'          | 30      | 19  | OW-2-26D | 95'       | 60         | 39        |
| OW-2-19   | 96.1'               | 35              | 31                | OW-2-24S               | 77.8'        | 30      | 30  | OW-2-27  | 93.5'     | 50         | 29        |
| OW-2-20D  | 96.6'               | 30              | 31                | OW-2-26S               | 74'          | 35      | 19  | OW-2-28D | 92.1'     | 35         | 27        |
| OW-2-21   | 96.6'               | 40              | 30                | OW-2-28S               | 76'          | 39      | 21  | OW-2-29  | 92.2'     | 30         | 28        |
| OW-2-22D  | 96.3'               | 30              | 29                | OW-2-30S               | 67.8'        | 40      | 19  | OW-2-30D | 88'       | 40         | 27        |
| OW-2-23   | 97.2'               | 50              | 29                | OW-2-34                | 71'          | 30      | 19  | OW-2-31  | 86'       | 25         | 39        |
| OW-2-24D  | 97'                 | 40              | 29                | OW-2-35                | 69.2'        | 35      | 29  | OW-2-32  | 84'       | 50         | 40        |
| OW-2-25   | 96'                 | 60              | 29                | OW-2-36                | 64.8'        | 30      | 19  | OW-2-33  | 82'       | 45         | 37        |
| comments: | All injection point | flows were adju | usted to ~30 scfl | h after collecting rea | dings.       |         |     |          |           |            |           |
|           |                     |                 |                   |                        | ction Syst   |         |     |          |           |            |           |
|           | Injection Ba        |                 |                   |                        | Injection Ba |         |     |          | _         | Points Log |           |
| ID        | Depth               | scfh            | psi               | ID                     | Depth        | scfh    | psi | ID       | DTW       | DO (mg/L)  | PID (ppm) |

| O <sub>2</sub> Injection System #2 |       |      |     |                  |       |      |     |                       |       |           |           |
|------------------------------------|-------|------|-----|------------------|-------|------|-----|-----------------------|-------|-----------|-----------|
| Injection Bank G                   |       |      |     | Injection Bank H |       |      |     | Monitoring Points Log |       |           |           |
| ID                                 | Depth | scfh | psi | ID               | Depth | scfh | psi | ID                    | DTW   | DO (mg/L) | PID (ppm) |
| OW-2-37                            | 62.8' | 35   | 20  | OW-2-45          | 61.1' | 30   | 21  | MP-2-1                | 28.44 | 25.49     | 0         |
| OW-2-38                            | 62.1' | 35   | 19  | OW-2-46          | 61'   | 30   | 20  | MP-2-2                | 29.52 | 32.89     | 0         |
| OW-2-39                            | 60'   | 30   | 19  | OW-2-47          | 60.5' | 25   | 20  | MP-2-3S               | 29.62 | 49.12     | 0         |
| OW-2-40                            | 61.7' | 25   | 20  |                  |       |      |     | MP-2-3D               | 29.86 | 49.21     | 0         |
| OW-2-41                            | 61.7' | 35   | 19  |                  |       |      |     | MP-2-4                | 18.4  | 39.73     | 0         |
| OW-2-42                            | 61.6' | 45   | 21  |                  |       |      |     | MP-2-5                | 16.63 | 14.35     | 0         |
| OW-2-43                            | 61.4' | 50   | 20  |                  |       |      |     |                       |       |           |           |
| OW-2-44R                           | 60.6' | 30   | 20  |                  |       |      |     |                       |       |           |           |

Comments: All injection point flows were adjusted to ~30 scfh after collecting readings. CNL = Could not locate due to snow and ice.

# SYSTEM #2

Hempstead Intersection Street Former MGP Site Nassau County, New York

|                                                                             |                                                                                    | Date:                            | 5/13/2011         |  |  |  |  |  |
|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------|-------------------|--|--|--|--|--|
|                                                                             | OPERATIONAL NOTES                                                                  |                                  |                   |  |  |  |  |  |
| GA5 Air Compressor                                                          | 0121110111211121                                                                   |                                  |                   |  |  |  |  |  |
| 1) Oil Level Checked with system unloaded                                   |                                                                                    | Yes X                            | No                |  |  |  |  |  |
| * Unload system, wait until Delivery Air                                    | r Pressure is less than 9 psi                                                      |                                  |                   |  |  |  |  |  |
| 2) Oil Level with system unloaded                                           | -                                                                                  |                                  |                   |  |  |  |  |  |
| Low (red)                                                                   |                                                                                    | X High (orange)                  |                   |  |  |  |  |  |
| 3) Oil added                                                                | Yes                                                                                | No X                             |                   |  |  |  |  |  |
| 4) Oil changed                                                              | Yes                                                                                | No X                             | <del></del>       |  |  |  |  |  |
| 5) Oil filter changed                                                       | Yes                                                                                | No X                             |                   |  |  |  |  |  |
| 6) Air filter Changed                                                       | Yes                                                                                | No X                             | <u></u>           |  |  |  |  |  |
| 7) Oil separator changed                                                    | Yes                                                                                | No X                             | <u></u>           |  |  |  |  |  |
| 8) Terminal strips checked                                                  | Yes X                                                                              | No                               | _                 |  |  |  |  |  |
| AS-80 O <sub>2</sub> Generator                                              |                                                                                    |                                  |                   |  |  |  |  |  |
| 1) Prefilter changed                                                        | Yes                                                                                | No X                             |                   |  |  |  |  |  |
| 2) Coalescing changed                                                       | Yes                                                                                | No X                             | <del>_</del>      |  |  |  |  |  |
|                                                                             | GENERAL SYSTEM NOTES                                                               | <u> </u>                         |                   |  |  |  |  |  |
|                                                                             | GENERAL STEELING TE                                                                |                                  |                   |  |  |  |  |  |
| <u>Trailer</u>                                                              |                                                                                    |                                  |                   |  |  |  |  |  |
| 1) Performed general housekeeping (i.e. sw                                  | 1) Performed general housekeeping (i.e. sweep, collect trash inside and out, etc.) |                                  |                   |  |  |  |  |  |
|                                                                             | Yes X                                                                              | No                               |                   |  |  |  |  |  |
| <ol><li>Abnormal conditions observed (e.g. van<br/>been observed.</li></ol> | dalism Finding rocks, stic                                                         | k and wood thrown at shed from p | ark. No damage hε |  |  |  |  |  |
| 3) Other major activities completed                                         |                                                                                    |                                  |                   |  |  |  |  |  |
| 4) Supplies needed                                                          |                                                                                    |                                  |                   |  |  |  |  |  |
| 5) Visitors                                                                 |                                                                                    |                                  |                   |  |  |  |  |  |
|                                                                             |                                                                                    |                                  |                   |  |  |  |  |  |
| Record routine activities such as any alarm/shutdown                        | ns, sampling, maintenance, materi                                                  | ial                              |                   |  |  |  |  |  |
| ransported off-site, oil/filter/gasket and/or any other                     | abnormal operating conditions:                                                     |                                  |                   |  |  |  |  |  |
|                                                                             |                                                                                    |                                  |                   |  |  |  |  |  |
|                                                                             |                                                                                    |                                  |                   |  |  |  |  |  |
|                                                                             |                                                                                    |                                  |                   |  |  |  |  |  |
|                                                                             |                                                                                    |                                  |                   |  |  |  |  |  |
|                                                                             |                                                                                    |                                  |                   |  |  |  |  |  |
|                                                                             |                                                                                    |                                  |                   |  |  |  |  |  |
|                                                                             |                                                                                    |                                  |                   |  |  |  |  |  |
|                                                                             |                                                                                    |                                  |                   |  |  |  |  |  |
| tion Items:                                                                 |                                                                                    |                                  |                   |  |  |  |  |  |
|                                                                             |                                                                                    |                                  |                   |  |  |  |  |  |

### SYSTEM #2

|                                           | ate:                          |                                                                       | /2011                            | <u> </u>                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                                  |                                                     |                                  |                        |                                  |
|-------------------------------------------|-------------------------------|-----------------------------------------------------------------------|----------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------|-----------------------------------------------------|----------------------------------|------------------------|----------------------------------|
|                                           | me:                           |                                                                       | 150                              | _                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                                  |                                                     |                                  |                        |                                  |
|                                           | ather:                        |                                                                       | nny                              | _                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                                  |                                                     |                                  |                        |                                  |
|                                           | emperature:                   |                                                                       | 0° F                             | _                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                                  |                                                     |                                  |                        |                                  |
|                                           | r Temperature:                |                                                                       | 2° F                             | _                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                                  |                                                     |                                  |                        |                                  |
| Perforr                                   | ned By:                       | Mike                                                                  | e Ryan                           | _                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                                  |                                                     |                                  |                        |                                  |
|                                           |                               |                                                                       |                                  |                                                      | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                                  |                                                     |                                  |                        |                                  |
|                                           | O <sub>2</sub> Ger            | nerator (Air                                                          | ·Sep)                            |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | Compr                            | <mark>essor (Kaesar F</mark>                        | Rotary Scr                       | ew)                    |                                  |
| Hours                                     |                               |                                                                       | 4,389                            | _                                                    | Compress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | sor Tank *        | *                                |                                                     | 110                              |                        | (psi)                            |
| Feed Air Pressu                           | ıre *                         |                                                                       | 85                               | _(psi)                                               | Dolivor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   | eadings be                       | elow are made f                                     | rom contro                       | ol panel)              | (ngi)                            |
| Cycle Pressure                            | *                             |                                                                       | 60                               | _(psi)                                               | Delivery Air 105 Element Outlet Temperature 171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                                  |                                                     |                                  | (psi)<br>(°F)          |                                  |
| Oxygen Receiv                             | er Pressure *                 |                                                                       |                                  | 85                                                   | Running Hours 4,441                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                                  |                                                     |                                  | (hours)                |                                  |
|                                           |                               |                                                                       |                                  | (psi)                                                | Loading 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Hours             |                                  |                                                     | 4,401                            |                        | (hours)                          |
|                                           |                               |                                                                       |                                  |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                                  |                                                     |                                  |                        |                                  |
|                                           |                               |                                                                       |                                  |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                                  |                                                     |                                  |                        |                                  |
|                                           |                               |                                                                       |                                  |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                                  |                                                     |                                  |                        |                                  |
| Oxygen Purity                             |                               |                                                                       | 95.7                             | (percent)                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                                  |                                                     |                                  |                        |                                  |
|                                           | g during loading cyc          | ele                                                                   |                                  |                                                      | * maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | reading du        | ring loading                     | cycle                                               |                                  |                        |                                  |
|                                           |                               |                                                                       |                                  | O <sub>2</sub> Inje                                  | ction Syst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | em #2             |                                  |                                                     |                                  |                        |                                  |
| O <sub>2</sub> Injection System #2        |                               |                                                                       |                                  |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                                  |                                                     |                                  |                        |                                  |
|                                           | Injection Ba                  | nk A                                                                  |                                  |                                                      | Injection Ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |                                  |                                                     | Injection                        | Bank C                 |                                  |
| ID                                        | Injection Ba                  | nk A<br>scfh                                                          | psi                              |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | psi                              | ID                                                  | Injection<br>Depth               | Bank C                 | psi                              |
| ID OW-2-2                                 | <u> </u>                      |                                                                       | psi<br>31                        |                                                      | Injection Ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ınk B             | <b>psi</b> 20                    | ID OW-2-10D                                         |                                  |                        | <b>psi</b> 28                    |
|                                           | Depth                         | scfh                                                                  |                                  | ID                                                   | Injection Ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nnk B<br>scfh     |                                  |                                                     | Depth                            | scfh                   |                                  |
| OW-2-2                                    | <b>Depth</b> 90.2'            | scfh 55                                                               | 31                               | ID OW-2-9S                                           | Depth 75'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | scfh 30           | 20                               | OW-2-10D                                            | <b>Depth</b> 97.2'               | scfh 40                | 28                               |
| OW-2-2                                    | 90.2'<br>94.3'                | 55<br>90                                                              | 31                               | OW-2-9S OW-2-10S                                     | Injection Ba Depth 75' 75'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | scfh 30 30        | 20 29                            | OW-2-10D                                            | 97.2'<br>100.8'                  | scfh 40 30             | 28                               |
| OW-2-2<br>OW-2-3<br>OW-2-4                | 90.2'<br>94.3'<br>94.7'       | scfh           55           90           55                           | 31<br>29<br>36                   | ID  OW-2-9S  OW-2-10S  OW-2-11S                      | Injection Ba   Depth     75'       75'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30 30 30          | 20<br>29<br>21                   | OW-2-10D<br>OW-2-11D<br>OW-2-12                     | 97.2'<br>100.8'<br>94'           | scfh 40 30 35          | 28<br>32<br>22                   |
| OW-2-2<br>OW-2-3<br>OW-2-4<br>OW-2-5      | 90.2' 94.3' 94.7' 95.3'       | sefh           55           90           55           50              | 31<br>29<br>36<br>30             | OW-2-9S OW-2-10S OW-2-11S OW-2-13S                   | Injection Ba   Depth   75'   75'   76.5'   75'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30 30 30 40       | 20<br>29<br>21<br>20             | OW-2-10D OW-2-11D OW-2-12 OW-2-13D                  | 97.2' 100.8' 94' 97'             | scfh 40 30 35 45       | 28<br>32<br>22<br>40             |
| OW-2-2 OW-2-3 OW-2-4 OW-2-5 OW-2-6        | 90.2' 94.3' 94.7' 95.3' 95.7' | scfh           55           90           55           50              | 31<br>29<br>36<br>30<br>31       | OW-2-9S OW-2-10S OW-2-11S OW-2-13S OW-2-15S          | Injection Ba   Depth     75'     75'       76.5'       75'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 30 30 30 40 35    | 20<br>29<br>21<br>20<br>19       | OW-2-10D OW-2-11D OW-2-12 OW-2-13D OW-2-14          | 97.2' 100.8' 94' 97' 96.4'       | scfh 40 30 35 45       | 28<br>32<br>22<br>40<br>30       |
| OW-2-2 OW-2-3 OW-2-4 OW-2-5 OW-2-6 OW-2-7 | 90.2' 94.3' 94.7' 95.3' 95.7' | sefh           55           90           55           50           50 | 31<br>29<br>36<br>30<br>31<br>30 | OW-2-9S OW-2-10S OW-2-11S OW-2-13S OW-2-15S OW-2-16S | Injection Ba   Depth   75'   75'   76.5'   75'   75'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5'   75.5' | 30 30 30 40 35 30 | 20<br>29<br>21<br>20<br>19<br>20 | OW-2-10D OW-2-11D OW-2-12 OW-2-13D OW-2-14 OW-2-15D | 97.2' 100.8' 94' 97' 96.4' 94.6' | scfh 40 30 35 45 55 60 | 28<br>32<br>22<br>40<br>30<br>31 |

### SYSTEM #2

Hempstead Intersection Street Former MGP Site Nassau County, New York

|           |                     |                 |                  | Nassau (               | County, Ne   | ew York |     |          |           |            |           |
|-----------|---------------------|-----------------|------------------|------------------------|--------------|---------|-----|----------|-----------|------------|-----------|
|           |                     |                 |                  |                        |              |         |     | Date:    |           | 5/26/2011  |           |
|           |                     |                 |                  | O <sub>2</sub> Inje    | ction Syst   | em #2   |     |          |           |            |           |
|           | Injection Ba        | ank D           |                  |                        | Injection Ba | nk E    |     |          | Injection | Bank F     |           |
| ID        | Depth               | scfh            | psi              | ID                     | Depth        | scfh    | psi | ID       | Depth     | scfh       | psi       |
| OW-2-18D  | 95.5'               | 60              | 30               | OW-2-22S               | 76'          | 50      | 20  | OW-2-26D | 95'       | 50         | 36        |
| OW-2-19   | 96.1'               | 40              | 30               | OW-2-24S               | 77.8'        | 45      | 23  | OW-2-27  | 93.5'     | 30         | 29        |
| OW-2-20D  | 96.6'               | 45              | 31               | OW-2-26S               | 74'          | 60      | 19  | OW-2-28D | 92.1'     | 30         | 29        |
| OW-2-21   | 96.6'               | 40              | 29               | OW-2-28S               | 76'          | 30      | 21  | OW-2-29  | 92.2'     | 30         | 28        |
| OW-2-22D  | 96.3'               | 40              | 29               | OW-2-30S               | 67.8'        | 30      | 18  | OW-2-30D | 88'       | 30         | 27        |
| OW-2-23   | 97.2'               | 50              | 33               | OW-2-34                | 71'          | 35      | 20  | OW-2-31  | 86'       | 40         | 31        |
| OW-2-24D  | 97'                 | 40              | 29               | OW-2-35                | 69.2'        | 50      | 27  | OW-2-32  | 84'       | 50         | 38        |
| OW-2-25   | 96'                 | 50              | 28               | OW-2-36                | 64.8'        | 35      | 21  | OW-2-33  | 82'       | 30         | 36        |
| Comments: | All injection point | flows were adju | usted to ~30 scf | h after collecting rea | idings.      |         |     |          |           |            |           |
|           |                     |                 |                  |                        | ction Syst   |         |     |          |           |            |           |
|           | Injection Ba        |                 |                  |                        | Injection Ba |         |     |          |           | Points Log |           |
| ID        | Depth               | scfh            | psi              | ID                     | Depth        | scfh    | psi | ID       | DTW       | DO (mg/L)  | PID (ppm) |

| O <sub>2</sub> Injection System #2 |              |      |     |         |              |      |     |         |                   |            |           |
|------------------------------------|--------------|------|-----|---------|--------------|------|-----|---------|-------------------|------------|-----------|
|                                    | Injection Ba | nk G |     |         | Injection Ba | nk H |     |         | <b>Monitoring</b> | Points Log |           |
| ID                                 | Depth        | scfh | psi | ID      | Depth        | scfh | psi | ID      | DTW               | DO (mg/L)  | PID (ppm) |
| OW-2-37                            | 62.8'        | 30   | 20  | OW-2-45 | 61.1'        | 30   | 21  | MP-2-1  | 28.20             | 14.20      | 0         |
| OW-2-38                            | 62.1'        | 28   | 19  | OW-2-46 | 61'          | 30   | 21  | MP-2-2  | 29.26             | 31.75      | 0         |
| OW-2-39                            | 60'          | 20   | 18  | OW-2-47 | 60.5'        | 30   | 19  | MP-2-3S | 29.35             | 43.64      | 0         |
| OW-2-40                            | 61.7'        | 20   | 20  |         |              |      |     | MP-2-3D | 29.61             | 44.41      | 0         |
| OW-2-41                            | 61.7'        | 20   | 20  |         |              |      |     | MP-2-4  | 18.13             | 45.41      | 0         |
| OW-2-42                            | 61.6'        | 30   | 20  |         |              |      |     | MP-2-5  | 16.31             | 10.32      | 0         |
| OW-2-43                            | 61.4'        | 25   | 19  |         |              |      |     |         |                   |            |           |
| OW-2-44R                           | 60.6'        | 30   | 19  |         |              |      |     |         |                   |            |           |
|                                    | ·            |      | ·   | ·       | ·            | ·    | ·   | ·       | ·                 | ·          |           |

Comments: All injection point flows were adjusted to ~30 scfh after collecting readings. CNL = Could not locate due to snow and ice.

### SYSTEM #2

|                                                                                                                                                                                                                                                                                | Date:                             | 5/26/2011 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------|
| OPERATIONAL NOTES                                                                                                                                                                                                                                                              |                                   |           |
| GA5 Air Compressor                                                                                                                                                                                                                                                             |                                   |           |
| Oil Level Checked with system unloaded*     * Unload system, wait until Delivery Air Pressure is less than 9 psi                                                                                                                                                               | Yes X No                          |           |
| 2) Oil Level with system unloaded                                                                                                                                                                                                                                              |                                   |           |
| Low (red) Normal (green)                                                                                                                                                                                                                                                       | High (orange)                     |           |
| 3) Oil added Yes X                                                                                                                                                                                                                                                             | No                                |           |
| 4) Oil changed Yes                                                                                                                                                                                                                                                             | No X                              |           |
| 5) Oil filter changed Yes                                                                                                                                                                                                                                                      | No X                              |           |
| 6) Air filter Changed Yes 7) Oil separator changed Yes                                                                                                                                                                                                                         | No X<br>No X                      |           |
| 8) Terminal strips checked Yes X                                                                                                                                                                                                                                               | No X                              |           |
| 6) Terminal surps enceked 1cs X                                                                                                                                                                                                                                                | 140                               |           |
| AS-80 O <sub>2</sub> Generator                                                                                                                                                                                                                                                 |                                   |           |
| 1) Prefilter changed Yes X                                                                                                                                                                                                                                                     | No                                |           |
| 2) Coalescing changed Yes                                                                                                                                                                                                                                                      | No X                              |           |
|                                                                                                                                                                                                                                                                                |                                   |           |
| GENERAL SYSTEM NOTES                                                                                                                                                                                                                                                           |                                   |           |
| Trailer  1) Performed general housekeeping (i.e. sweep, collect trash inside and out, etc.)  Yes X                                                                                                                                                                             | No                                |           |
| 2) Abnormal conditions observed (e.g. vandalism                                                                                                                                                                                                                                |                                   |           |
| 3) Other major activities completed                                                                                                                                                                                                                                            |                                   |           |
| 4) Supplies needed                                                                                                                                                                                                                                                             |                                   |           |
| 5) Visitors                                                                                                                                                                                                                                                                    |                                   |           |
| Record routine activities such as any alarm/shutdowns, sampling, maintenance, material transported off-site, oil/filter/gasket and/or any other abnormal operating conditions:  Raked out fence areas of leaves and garbage. Baged up and transported to roll off container in | Intersection Street Staging Yard. |           |
| Action Items:                                                                                                                                                                                                                                                                  |                                   |           |

### SYSTEM #2

|                                           | ate:                          |                     | /2011                            | _                                                    |                                                  |                |                            |                                                     |                                  |                            |                                  |
|-------------------------------------------|-------------------------------|---------------------|----------------------------------|------------------------------------------------------|--------------------------------------------------|----------------|----------------------------|-----------------------------------------------------|----------------------------------|----------------------------|----------------------------------|
|                                           | me:                           |                     | 140                              | _                                                    |                                                  |                |                            |                                                     |                                  |                            |                                  |
|                                           | ather:                        |                     | ınny                             | _                                                    |                                                  |                |                            |                                                     |                                  |                            |                                  |
|                                           | emperature:                   |                     | /8° F                            | =                                                    |                                                  |                |                            |                                                     |                                  |                            |                                  |
|                                           | r Temperature:                |                     | 1° F                             | =                                                    |                                                  |                |                            |                                                     |                                  |                            |                                  |
| Perform                                   | ned By:                       | Mike                | e Ryan                           | _                                                    |                                                  |                |                            |                                                     |                                  |                            |                                  |
|                                           | O <sub>2</sub> Ger            | nerator (Ai         | rSep)                            |                                                      |                                                  |                | Compre                     | essor (Kaesar F                                     | Rotary Scr                       | ew)                        |                                  |
| Hours                                     |                               |                     | 4,724                            | _                                                    | Compress                                         | sor Tank *     | ¢                          |                                                     | 90                               |                            | (psi)                            |
| Feed Air Pressu                           | ıre *                         |                     | 70                               | (psi)                                                |                                                  |                | eadings be                 | elow are made f                                     |                                  | ol panel)                  |                                  |
|                                           |                               |                     |                                  |                                                      | Delivery                                         | Air            |                            |                                                     | 85                               |                            | (psi)                            |
| Cycle Pressure                            | *                             |                     | 60                               | _(psi)                                               | Element Outlet Temperature                       |                |                            |                                                     | 172                              |                            | (°F)                             |
| Oxygen Receiv                             | ar Praccura *                 |                     |                                  | 100                                                  | Running Hours                                    |                |                            |                                                     | 4,778                            |                            | (hours)                          |
| Oxygen Receiv                             | ci i iessuie                  |                     |                                  |                                                      | -11                                              |                |                            |                                                     |                                  | •                          |                                  |
|                                           |                               |                     |                                  | (psi)                                                | Loading Hours                                    |                |                            |                                                     | 4,737                            | :                          | (hours)                          |
|                                           |                               |                     |                                  |                                                      |                                                  |                |                            |                                                     |                                  |                            |                                  |
|                                           |                               |                     |                                  |                                                      |                                                  |                |                            |                                                     |                                  |                            |                                  |
| Oxygen Purity                             |                               |                     | 98.6                             | (norgant)                                            |                                                  |                |                            |                                                     |                                  |                            |                                  |
|                                           | g during loading cyc          | ele.                | 96.0                             | (percent)                                            | * maximum                                        | reading du     | ring loading               | cycle                                               |                                  |                            |                                  |
| maximum reading                           | g during loading cyc          |                     |                                  | O. Inje                                              | ection Syst                                      |                | ing loading                | cycle                                               |                                  |                            |                                  |
|                                           |                               |                     |                                  |                                                      |                                                  |                |                            |                                                     |                                  |                            |                                  |
|                                           | Injection Ba                  | nk A                |                                  |                                                      | Injection Bank B                                 |                |                            |                                                     | Injection                        | Bank C                     |                                  |
| ID                                        | Injection Ba                  |                     | psi                              |                                                      | Injection Ba                                     | ınk B          | psi                        | ID                                                  | Injection<br>Depth               |                            | psi                              |
| ID<br>OW-2-2                              | Injection Ba Depth 90.2'      | sefh 70             | psi 28                           |                                                      |                                                  |                | <b>psi</b> 20              | ID OW-2-10D                                         | Injection Depth 97.2'            | Bank C scfh                | <b>psi</b> 24                    |
|                                           | Depth                         | scfh                |                                  | ID                                                   | Injection Ba                                     | nnk B<br>scfh  |                            |                                                     | Depth                            | scfh                       |                                  |
| OW-2-2                                    | <b>Depth</b> 90.2'            | scfh<br>70          | 28                               | ID OW-2-9S                                           | Depth 75'                                        | scfh 25        | 20                         | OW-2-10D                                            | 97.2'                            | scfh<br>80                 | 24                               |
| OW-2-2                                    | 90.2'<br>94.3'                | 70<br>90            | 28                               | ID OW-2-9S OW-2-10S                                  | Tnjection Ba Depth 75' 75'                       | 25 30          | 20<br>27                   | OW-2-10D                                            | 97.2'<br>100.8'                  | 80<br>40                   | 24                               |
| OW-2-2<br>OW-2-3<br>OW-2-4                | 90.2'<br>94.3'<br>94.7'       | 90 70               | 28<br>38<br>37                   | ID  OW-2-9S  OW-2-10S  OW-2-11S                      | Injection Ba   Depth     75'       75'           | 25<br>30<br>30 | 20<br>27<br>22             | OW-2-10D<br>OW-2-11D<br>OW-2-12                     | 97.2'<br>100.8'<br>94'           | 80<br>40<br>35             | 24<br>32<br>22                   |
| OW-2-2<br>OW-2-3<br>OW-2-4<br>OW-2-5      | 90.2' 94.3' 94.7' 95.3'       | 90 70 50            | 28<br>38<br>37<br>31             | OW-2-9S OW-2-10S OW-2-11S OW-2-13S                   | Injection Ba   Depth   75'   75'   76.5'   75'   | 25 30 40       | 20<br>27<br>22<br>20       | OW-2-10D OW-2-11D OW-2-12 OW-2-13D                  | 97.2' 100.8' 94' 97'             | sefh 80 40 35 30           | 24<br>32<br>22<br>32             |
| OW-2-2 OW-2-3 OW-2-4 OW-2-5 OW-2-6        | 90.2' 94.3' 94.7' 95.3'       | 90 70 50 50         | 28<br>38<br>37<br>31<br>31       | OW-2-9S OW-2-10S OW-2-11S OW-2-13S OW-2-15S          | Injection Ba   Depth     75'       75'           | 25 30 30 40 60 | 20<br>27<br>22<br>20<br>19 | OW-2-10D OW-2-11D OW-2-12 OW-2-13D OW-2-14          | 97.2' 100.8' 94' 97' 96.4'       | 80<br>40<br>35<br>30<br>50 | 24<br>32<br>22<br>32<br>29       |
| OW-2-2 OW-2-3 OW-2-4 OW-2-5 OW-2-6 OW-2-7 | 90.2' 94.3' 94.7' 95.3' 95.7' | sefh 70 90 70 50 50 | 28<br>38<br>37<br>31<br>31<br>30 | OW-2-9S OW-2-10S OW-2-11S OW-2-13S OW-2-15S OW-2-16S | Injection Ba   Depth     75'     75'       75.5' | 30 30 40 60 40 | 20<br>27<br>22<br>20<br>19 | OW-2-10D OW-2-11D OW-2-12 OW-2-13D OW-2-14 OW-2-15D | 97.2' 100.8' 94' 97' 96.4' 94.6' | scfh  80  40  35  30  50   | 24<br>32<br>22<br>32<br>29<br>30 |

### SYSTEM #2

Hempstead Intersection Street Former MGP Site Nassau County, New York

|          |                     |                 |                 |                        |              |       |     | Date:        |           | 6/10/2011 |     |
|----------|---------------------|-----------------|-----------------|------------------------|--------------|-------|-----|--------------|-----------|-----------|-----|
|          |                     |                 |                 | O Inio                 | ction Syst   | om #2 |     |              |           |           |     |
|          | Injection Ba        | ank D           |                 |                        | Injection Ba |       |     |              | Injection | Bank F    |     |
| ID       | Depth               | scfh            | psi             | ID                     | Depth        | scfh  | psi | ID           | Depth     | scfh      | psi |
| OW-2-18D | 95.5'               | 60              | 32              | OW-2-22S               | 76'          | 20    | 20  | OW-2-26D     | 95'       | 35        | 35  |
| OW-2-19  | 96.1'               | 35              | 30              | OW-2-24S               | 77.8'        | 25    | 22  | OW-2-27      | 93.5'     | 30        | 28  |
| OW-2-20D | 96.6'               | 40              | 31              | OW-2-26S               | 74'          | 30    | 20  | OW-2-28D     | 92.1'     | 30        | 28  |
| OW-2-21  | 96.6'               | 40              | 29              | OW-2-28S               | 76'          | 25    | 22  | OW-2-29      | 92.2'     | 25        | 29  |
| OW-2-22D | 96.3'               | 40              | 28              | OW-2-30S               | 67.8'        | 20    | 18  | OW-2-30D     | 88'       | 30        | 27  |
| OW-2-23  | 97.2'               | 45              | 36              | OW-2-34                | 71'          | 30    | 20  | OW-2-31      | 86'       | 30        | 37  |
| OW-2-24D | 97'                 | 30              | 29              | OW-2-35                | 69.2'        | 40    | 36  | OW-2-32      | 84'       | 40        | 39  |
| OW-2-25  | 96'                 | 50              | 31              | OW-2-36                | 64.8'        | 30    | 20  | OW-2-33      | 82'       | 40        | 32  |
| omments: | All injection point | flows were adju | sted to ~30 scf | h after collecting rea | dings.       |       | •   | <del>!</del> | •         |           | •   |
|          |                     |                 |                 | O <sub>2</sub> Inie    | ction Syst   | em #2 |     |              |           |           |     |

| O <sub>2</sub> Injection System #2 |              |      |     |         |              |       |     |                       |       |           |           |
|------------------------------------|--------------|------|-----|---------|--------------|-------|-----|-----------------------|-------|-----------|-----------|
|                                    | Injection Ba | nk G |     |         | Injection Ba | ınk H |     | Monitoring Points Log |       |           |           |
| ID                                 | Depth        | scfh | psi | ID      | Depth        | scfh  | psi | ID                    | DTW   | DO (mg/L) | PID (ppm) |
| OW-2-37                            | 62.8'        | 30   | 20  | OW-2-45 | 61.1'        | 35    | 20  | MP-2-1                | 28.43 | 12.51     | 38.7      |
| OW-2-38                            | 62.1'        | 25   | 19  | OW-2-46 | 61'          | 30    | 19  | MP-2-2                | 29.48 | 7.21      | 0         |
| OW-2-39                            | 60'          | 30   | 18  | OW-2-47 | 60.5'        | 30    | 19  | MP-2-3S               | 29.60 | 8.68      | 0         |
| OW-2-40                            | 61.7'        | 20   | 20  |         |              |       |     | MP-2-3D               | 29.83 | 11.91     | 0         |
| OW-2-41                            | 61.7'        | 20   | 20  |         |              |       |     | MP-2-4                | 18.35 | 11.05     | 1.4       |
| OW-2-42                            | 61.6'        | 30   | 20  |         |              |       |     | MP-2-5                | 16.58 | 8.46      | 73.8      |
| OW-2-43                            | 61.4'        | 30   | 20  |         |              |       |     |                       |       |           |           |
| OW-2-44R                           | 60.6'        | 30   | 20  |         |              |       |     |                       |       |           |           |

Comments: All injection point flows were adjusted to ~30 scfh after collecting readings. CNL = Could not locate due to snow and ice.

### SYSTEM #2

|                                                                                                                           |                                |                      | Date: 6/10               | /2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                           | OPERATIONAL NOTES              |                      |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| GA5 Air Compressor                                                                                                        |                                |                      |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Oil Level Checked with system unloaded*                                                                                   |                                | Yes X                | No                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| * Unload system, wait until Delivery Air Pres                                                                             | ssure is less than 9 psi       |                      |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2) Oil Level with system unloaded                                                                                         |                                |                      |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Low (red)                                                                                                                 |                                | X High (ora          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3) Oil added                                                                                                              | Yes                            |                      | No X                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4) Oil changed                                                                                                            | Yes                            |                      | No X                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5) Oil filter changed                                                                                                     | Yes                            |                      | No X                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6) Air filter Changed                                                                                                     | Yes                            |                      | No X                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7) Oil separator changed                                                                                                  | Yes                            |                      | No X                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8) Terminal strips checked                                                                                                | Yes X                          |                      | No                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| AS-80 O <sub>2</sub> Generator                                                                                            |                                |                      |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1) Prefilter changed                                                                                                      | Yes                            |                      | No X                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2) Coalescing changed                                                                                                     | Yes                            |                      | No X                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                           | GENERAL SYSTEM NOTES           |                      |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                           |                                |                      |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <u>Trailer</u>                                                                                                            |                                |                      |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1) Performed general housekeeping (i.e. sweep,                                                                            |                                | .)                   |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                           | Yes X                          |                      | No                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2) Al.,                                                                                                                   |                                |                      |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Abnormal conditions observed (e.g. vandalist                                                                              | <u> </u>                       |                      |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                           |                                |                      |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Other major activities completed                                                                                          |                                |                      |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                           |                                |                      |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                           |                                |                      |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4) Supplies needed                                                                                                        |                                |                      |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                           |                                |                      |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                           |                                |                      |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5) Visitors                                                                                                               |                                |                      |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                           |                                |                      |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| December 1 and 1 and 1 and 1 and 1 and 1                                                                                  |                                | .1                   |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Record routine activities such as any alarm/shutdowns, sa<br>transported off-site, oil/filter/gasket and/or any other abn |                                | aı                   |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| transported off-site, on/inter/gasket and/or any other abir                                                               | ormai operating conditions.    |                      |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                           |                                |                      |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                           |                                |                      |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Buildup of sticks, rocks wood and general garbage thrown in                                                               | side fence enclosure. Ragged u | n and transported to | roll off container in In | tersection Street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Staging Yard.                                                                                                             | Dugged u                       | ra umsported to      | or container in in       | and the state of t |
|                                                                                                                           |                                |                      |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                           |                                |                      |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                           |                                |                      |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Action Items:                                                                                                             |                                |                      |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                           |                                |                      |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

### SYSTEM #2

| Tii<br>Wea<br>Outdoor Te<br>Inside Trailei | ate: me: ather: emperature: r Temperature: med By: | /2011<br>114<br>ain<br>0° F<br>2° F | -<br>-<br>-<br>-<br>- |                     |                                                 |               |               |                      |                                  |           |               |  |
|--------------------------------------------|----------------------------------------------------|-------------------------------------|-----------------------|---------------------|-------------------------------------------------|---------------|---------------|----------------------|----------------------------------|-----------|---------------|--|
|                                            | O <sub>2</sub> Ger                                 | nerator (Ain                        | Sep)                  |                     |                                                 |               | Compre        | essor (Kaesar R      | Rotary Scr                       | ·ew)      |               |  |
| Hours                                      |                                                    |                                     | 5,051                 | -                   | Compress                                        | sor Tank *    | •             |                      | 79                               |           | (psi)         |  |
| Feed Air Pressu                            | ıre *                                              |                                     | 54                    | _(psi)              | (readings below are made                        |               |               |                      | rom contro                       | ol panel) |               |  |
| Cycle Pressure                             | *                                                  |                                     | 58                    | _(psi)              | Delivery Air 102 Element Outlet Temperature 169 |               |               |                      |                                  |           | (psi)<br>(°F) |  |
| Oxygen Receiv                              | er Pressure *                                      |                                     |                       | 105 (psi)           | Running Hours 5,106 Loading Hours 5,064         |               |               |                      |                                  |           | (hours)       |  |
| Oxygen Purity * maximum reading            | g during loading cyc                               | ele                                 | 94.9                  | _(percent)          |                                                 |               | ing loading   | cycle                |                                  |           |               |  |
|                                            | T. 1. 17. TO                                       |                                     |                       |                     | ction Syst                                      |               |               |                      | T                                | D 1 C     |               |  |
| ID                                         | Injection Ba  Depth                                | scfh                                | psi                   | ID                  | Injection Ba                                    | scfh          | psi           | ID                   | Injection Bank C  Depth scfh psi |           |               |  |
| OW-2-2                                     | 90.2'                                              | 70                                  | 27                    | OW-2-9S             | 75'                                             | 40            | 20            | OW-2-10D             | 97.2'                            | 40        | 28            |  |
| OW-2-3                                     | 94.3'                                              | 90                                  | 19                    | OW-2-10S            | 75'                                             | 40            | 29            | OW-2-11D             | 100.8'                           | 45        | 31            |  |
| OW-2-4                                     | 94.7'                                              | 70                                  | 33                    | OW-2-11S            | 76.5'                                           | 40            | 21            | OW-2-12              | 94'                              | 50        | 22            |  |
| OW-2-5                                     | 95.3'                                              | 50                                  | 30                    | OW-2-13S            | 75'                                             | 60            | 19            | OW-2-13D             | 97'                              | 55        | 27            |  |
| OW-2-6                                     | 95.7'                                              | 50                                  | 31                    | OW-2-15S            | 75'                                             | 60            | 21            | OW-2-14              | 96.4'                            | 50        | 27            |  |
| OW-2-7                                     | 96'                                                | 50                                  | 30                    | OW-2-16S            | 75.5'                                           | 40            | 20            | OW-2-15D             | 94.6'                            | 40        | 29            |  |
| OW-2-8                                     | 96.3'                                              | 50                                  | 30                    | OW-2-18S            | 74.5'                                           | 40            | 19            | OW-2-16D             | 94.1'                            | 30        | 29            |  |
| OW-2-9D                                    | 96.7'                                              | 50                                  | 30                    | OW-2-20S            | 79'                                             | 40            | 23            | OW-2-17              | 95'                              | 60        | 29            |  |
| Comments:                                  | All injection point                                | flows were adj                      | usted to ~30 scf      | h at Injection Bank | B and to ~50                                    | scfh at Injec | etion Banks A | A & C after collecti | ng readings.                     |           |               |  |

### SYSTEM #2

Hempstead Intersection Street Former MGP Site Nassau County, New York

|           |                     |                 |                   |                        | mer MGP<br>County, No             |       |     |          |       |            |           |
|-----------|---------------------|-----------------|-------------------|------------------------|-----------------------------------|-------|-----|----------|-------|------------|-----------|
|           |                     |                 |                   |                        |                                   |       |     | Date:    |       | 6/24/2011  |           |
|           |                     |                 |                   | O <sub>2</sub> Inje    | ction Syst                        | em #2 |     |          |       |            |           |
|           | Injection Ba        | nk D            |                   |                        | Injection Bank E Injection Bank F |       |     |          |       |            |           |
| ID        | Depth               | scfh            | psi               | ID                     | Depth                             | scfh  | psi | ID       | Depth | scfh       | psi       |
| OW-2-18D  | 95.5'               | 80              | 29                | OW-2-22S               | 76'                               | 60    | 19  | OW-2-26D | 95'   | 50         | 34        |
| OW-2-19   | 96.1'               | 50              | 30                | OW-2-24S               | 77.8'                             | 60    | 22  | OW-2-27  | 93.5' | 40         | 29        |
| OW-2-20D  | 96.6'               | 50              | 32                | OW-2-26S               | 74'                               | 50    | 18  | OW-2-28D | 92.1' | 40         | 28        |
| OW-2-21   | 96.6'               | 40              | 29                | OW-2-28S               | 76'                               | 40    | 21  | OW-2-29  | 92.2' | 35         | 28        |
| OW-2-22D  | 96.3'               | 40              | 29                | OW-2-30S               | 67.8'                             | 35    | 17  | OW-2-30D | 88'   | 40         | 27        |
| OW-2-23   | 97.2'               | 55              | 33                | OW-2-34                | 71'                               | 40    | 20  | OW-2-31  | 86'   | 50         | 35        |
| OW-2-24D  | 97'                 | 40              | 29                | OW-2-35                | 69.2'                             | 40    | 32  | OW-2-32  | 84'   | 50         | 39        |
| OW-2-25   | 96'                 | 50              | 29                | OW-2-36                | 64.8'                             | 30    | 20  | OW-2-33  | 82'   | 40         | 37        |
| Comments: | All injection point | flows were adju | usted to ~30 scfl | n after collecting rea | idings.                           |       |     |          |       |            |           |
|           |                     |                 |                   |                        | ction Syst                        |       |     |          |       |            |           |
|           | Injection Ba        |                 |                   |                        | Injection Ba                      |       |     |          |       | Points Log |           |
| ID        | Depth               | scfh            | psi               | ID                     | Depth                             | scfh  | psi | ID       | DTW   | DO (mg/L)  | PID (ppm) |
| OW-2-37   | 62.8'               | 40              | 20                | OW-2-45                | 61.1'                             | 30    | 20  | MP-2-1   | 28.54 | 15.18      | 214.4     |

|          | O <sub>2</sub> Injection System #2 |      |     |         |              |      |     |         |                   |            |           |  |
|----------|------------------------------------|------|-----|---------|--------------|------|-----|---------|-------------------|------------|-----------|--|
|          | Injection Ba                       | nk G |     |         | Injection Ba | nk H |     |         | <b>Monitoring</b> | Points Log |           |  |
| ID       | Depth                              | scfh | psi | ID      | Depth        | scfh | psi | ID      | DTW               | DO (mg/L)  | PID (ppm) |  |
| OW-2-37  | 62.8'                              | 40   | 20  | OW-2-45 | 61.1'        | 30   | 20  | MP-2-1  | 28.54             | 15.18      | 214.4     |  |
| OW-2-38  | 62.1'                              | 40   | 19  | OW-2-46 | 61'          | 40   | 19  | MP-2-2  | 29.61             | 21.12      | 0         |  |
| OW-2-39  | 60'                                | 50   | 18  | OW-2-47 | 60.5'        | 40   | 19  | MP-2-3S | 29.71             | 12.13      | 7.1       |  |
| OW-2-40  | 61.7'                              | 40   | 20  |         |              |      |     | MP-2-3D | 29.97             | 15.79      | 10.2      |  |
| OW-2-41  | 61.7'                              | 45   | 19  |         |              |      |     | MP-2-4  | 18.47             | 9.41       | 149.4     |  |
| OW-2-42  | 61.6'                              | 35   | 19  |         |              |      |     | MP-2-5  | 16.70             | 11.20      | 157.1     |  |
| OW-2-43  | 61.4'                              | 30   | 20  |         |              |      |     |         |                   |            |           |  |
| OW-2-44R | 60.6'                              | 30   | 19  |         |              |      |     |         |                   |            |           |  |
| il .     |                                    |      |     |         |              |      |     |         |                   |            |           |  |

Comments: All injection point flows were adjusted to ~30 scfh after collecting readings. CNL = Could not locate due to snow and ice.

### SYSTEM #2

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             | Date:           | 6/24/2011 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------|-----------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | OPERATIONAL NOTES           |                 |           |
| GA5 Air Compressor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 01211101112110120           |                 |           |
| Oil Level Checked with system unloaded*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             | Yes X           | No        |
| * Unload system, wait until Delivery Air Press                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sure is less than 9 psi     |                 |           |
| Oil Level with system unloaded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                 |           |
| Low (red)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Normal (green)              | X High (orange) |           |
| 3) Oil added                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Yes                         |                 | X         |
| 4) Oil changed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes                         |                 | <u>X</u>  |
| 5) Oil filter changed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Yes                         |                 | X         |
| 6) Air filter Changed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Yes                         |                 | X         |
| 7) Oil separator changed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Yes                         |                 | X         |
| 8) Terminal strips checked                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Yes X                       | No              |           |
| AS-80 O <sub>2</sub> Generator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                 |           |
| 1) Prefilter changed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Yes                         | No 2            | X         |
| 2) Coalescing changed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Yes                         |                 | X         |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ENERAL SYSTEM NOTES         |                 |           |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ENERAL SISIEM NOTES         |                 |           |
| Trailer  1) Performed general housekeeping (i.e. sweep, or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             | )               |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Yes X                       | No              |           |
| 2) Abnormal conditions observed (e.g. vandalisn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                 |           |
| Other major activities completed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |                 |           |
| 4) Supplies needed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |                 |           |
| 5) Visitors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |                 |           |
| Record routine activities such as any alarm/shutdowns, san transported off-site, oil/filter/gasket and/or any other abnot the such as a | ormal operating conditions: | ıl              |           |
| Action Items:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             |                 |           |

## SYSTEM #1

| Tir<br>Wea<br>Outdoor To       | nte: me: uther: emperature: Temperature: | 13<br>Su<br>~6 | 72011<br>320<br>nny<br>5°F<br>0°F | -<br>-<br>-       |                          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |               |                 |                |  |
|--------------------------------|------------------------------------------|----------------|-----------------------------------|-------------------|--------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------|-----------------|----------------|--|
|                                | ned By:                                  |                | Ryan                              | -                 |                          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |               |                 |                |  |
|                                | O <sub>2</sub> Gen                       | erator (Air    | Sep)                              |                   |                          |                  | Compresso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | or (Kaesar Rot      | ary Screv     | v)              |                |  |
| Hours                          |                                          |                | 124                               | -                 | Compres                  | sor Tank *       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | 95            |                 | (psi)          |  |
| Feed Air Press                 |                                          |                | 110                               | (psi)             | Delivery                 | Air              | , and the second | v are made from     | 125           | panel)          | (psi)          |  |
| Cycle Pressure                 | *                                        |                | 70                                | (psi)             | Element                  | Outlet Temp      | perature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     | 176           |                 | (°F)           |  |
| Oxygen Receiv                  | ver Pressure *                           |                |                                   | 50 (psi)          | Running<br>Loading       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 135 (hour 91)       |               |                 |                |  |
| Oxygen Purity * maximum readin | g during loading cyc                     | cle            | 91.2                              | (percent)         |                          | n reading during | g loading cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e                   |               |                 |                |  |
|                                | Injection Ba                             | ınk 1          |                                   | O <sub>2</sub> II | njection Sy<br>Injection |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | Injection     | Bank 3          |                |  |
| ID                             | Depth                                    | scfh           | psi                               | ID                | Depth                    | scfh             | psi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ID                  | Depth         | scfh            | psi            |  |
| OW-1-1                         | 95.5                                     | 30             | 30                                | OW-1-5S           | 67.3                     | 25               | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OW-1-9D             | 88.5          | 50              | 27             |  |
| OW-1-2                         | 96.5                                     | 35             | 31                                | OW-1-6S           | 67.0                     | 30               | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OW-1-10D            | 87.2          | 50              | 27             |  |
| OW-1-3                         | 96.3                                     | OFF            | OFF                               | OW-1-7S           | 66.9                     | 35               | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OW-1-11D            | 86.1          | 55              | 30             |  |
| OW-1-4                         | 95.0                                     | 30             | 31                                | OW-1-8S           | 66.7                     | 30               | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OW-1-12D            | 85.3          | 50              | 30             |  |
| OW-1-5D                        | 93.9                                     | 35             | 30                                | OW-1-9S           | 66.0                     | 40               | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OW-1-13D            | 84.7          | 60              | 29             |  |
| OW-1-6D                        | 92.4                                     | 35             | 29                                | OW-1-10S          | 54.6                     | 35               | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OW-1-14D            | 84.1          | 60              | 30             |  |
| OW-1-7D                        | 91.1                                     | 30             | 29                                | OW-1-11S          | 54.1                     | 30               | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OW-1-15D            | 83.3          | 30              | 29             |  |
| OW-1-8D                        | 89.6                                     | 40             | 29                                | OW-1-12S          | 53.6                     | 30               | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OW-1-16D            | 82.5          | OFF             | OFF            |  |
| Comments:                      | All injection point and appear to be lea |                |                                   |                   |                          |                  | 7-1-3 and OW-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -16D did not indica | te pressure o | n or flow durir | ng the O&M eve |  |

### SYSTEM #1

Hempstead Intersection Street Former MGP Site Nassau County, New York

|           |              |       |     |                   |           |          |     | Date:     |           | 5/20/2011 | -   |
|-----------|--------------|-------|-----|-------------------|-----------|----------|-----|-----------|-----------|-----------|-----|
|           |              |       |     | O <sub>2</sub> In | jection S | ystem #1 |     |           |           |           |     |
|           | Injection Ba | ınk 4 |     |                   | Injection | Bank 5   |     |           | Injection | Bank 6    |     |
| ID        | Depth        | scfh  | psi | ID                | Depth     | scfh     | psi | ID        | Depth     | scfh      | psi |
| OW-1-13S  | 53.1         | 30    | 14  | OW-1-17D          | 79.5      | 35       | 16  | OW-1-21S  | 49.3      | 40        | 12  |
| OW-1-14S  | 52.7         | 20    | 15  | OW-1-18D          | 78.3      | 40       | 26  | OW-1-22S  | 49.3      | 40        | 12  |
| OW-1-15S  | 52.2         | 25    | 14  | OW-1-19D          | 78.9      | 35       | 27  | OW-1-23S  | 48.8      | 40        | 12  |
| OW-1-16SR | 51.8         | 40    | 26  | OW-1-20D          | 79.5      | 45       | 28  | OW-1-24S  | 48.4      | 40        | 12  |
| OW-1-17S  | 50.7         | 45    | 24  | OW-1-21D          | 79.5      | 30       | 28  | OW-1-25S  | 48.8      | 30        | 13  |
| OW-1-18S  | 50.2         | 30    | 13  | OW-1-22D          | 79.5      | 20       | 27  | OW-1-26SR | 48.3      | 35        | 13  |
| OW-1-19S  | 49.7         | OFF   | OFF | OW-1-23D          | 78.7      | 40       | 27  | OW-1-27S  | 48.3      | 40        | 13  |
| OW-1-20S  | 49.3         | 25    | 14  | OW-1-24D          | 78.2      | 30       | 28  | OW-1-28S  | 48.3      | 40        | 13  |

Comments:

All injection point flows were adjusted to ~30 scfh after collecting readings. Injection point OW-1-19S did not indicate pressure on or flow during the O&M event and appear to be leaking. A separate visit will be conducted to investigate this injection point.

|          |              |       |     | O <sub>2</sub> In | jection S | ystem #1 |     |          |           |        |     |
|----------|--------------|-------|-----|-------------------|-----------|----------|-----|----------|-----------|--------|-----|
|          | Injection Ba | ınk 7 |     |                   | Injection | n Bank 8 |     |          | Injection | Bank 9 |     |
| ID       | Depth        | scfh  | psi | ID                | Depth     | scfh     | psi | ID       | Depth     | scfh   | psi |
| OW-1-25D | 78.1         | 30    | 27  | OW-1-29S          | 48.5      | 35       | 13  | OW-1-33D | 83.2      | 35     | 29  |
| OW-1-26D | 78.1         | 30    | 29  | OW-1-30S          | 48.8      | 30       | 13  | OW-1-34D | 84.5      | 30     | 29  |
| OW-1-27D | 77.9         | 55    | 34  | OW-1-31S          | 49.3      | 30       | 13  | OW-1-35D | 85.0      | 60     | 27  |
| OW-1-28D | 78.0         | 40    | 27  | OW-1-32S          | 49.3      | 25       | 12  | OW-1-36D | 85.0      | 35     | 29  |
| OW-1-29D | 78.4         | 25    | 26  | OW-1-33S          | 49.7      | 30       | 13  | OW-1-37D | 84.0      | 35     | 29  |
| OW-1-30D | 79.0         | 50    | 40  | OW-1-34S          | 50.1      | 35       | 12  | OW-1-38D | 82.0      | 50     | 34  |
| OW-1-31D | 80.5         | 40    | 27  | OW-1-35S          | 50.3      | 40       | 13  | OW-1-39D | 78.0      | 40     | 28  |
| OW-1-32D | 81.6         | 50    | 28  | OW-1-36S          | 50.3      | 20       | 13  | OW-1-40D | 76.0      | 50     | 28  |

Comments: All injection point flows were adjusted to ~30 scfh after collecting readings.

## SYSTEM #1

Hempstead Intersection Street Former MGP Site

|           |                     |                 |                  | Nassa                | u County,               | New York |     |          |           |           |     |
|-----------|---------------------|-----------------|------------------|----------------------|-------------------------|----------|-----|----------|-----------|-----------|-----|
|           |                     |                 |                  |                      |                         |          |     | Date     |           | 5/20/2011 |     |
|           |                     |                 |                  | 0.1                  | is ation C              |          |     |          |           |           |     |
|           | Injection Ba        | nk 10           |                  | O <sub>2</sub> In    | jection Sy<br>Injection |          |     |          | Injection | Rank 12   |     |
| ID        | Depth Depth         | scfh            | psi              | ID                   | Depth                   | scfh     | psi | ID       | Depth     | scfh      | psi |
| OW-1-37S  | 50.5                | 30              | 12               | OW-1-41D             | 73.6                    | 40       | 22  | OW-1-43  | 67.4      | 40        | 19  |
| OW-1-38S  | 50.6                | 20              | 13               | OW-1-42D             | 71.0                    | 35       | 21  | OW-1-44  | 66.6      | 35        | 18  |
| OW-1-39S  | 50.7                | 40              | 12               | OW-1-45              | 65.7                    | 45       | 19  | OW-1-51R | 60.6      | 45        | 18  |
| OW-1-40S  | 51.1                | 30              | 12               | OW-1-46              | 64.3                    | 40       | 18  | OW-1-52  | 59.3      | 30        | 17  |
| OW-1-41S  | 51.5                | 30              | 13               | OW-1-47              | 63.4                    | 50       | 18  | OW-1-53  | 60.0      | 35        | 17  |
| OW-1-42S  | 51.3                | 40              | 12               | OW-1-48              | 62.5                    | 55       | 18  | OW-1-54  | 60.0      | 45        | 17  |
|           |                     |                 |                  | OW-1-49              | 61.5                    | 40       | 17  |          |           |           |     |
|           |                     |                 |                  | OW-1-50              | 61.0                    | 40       | 17  |          |           |           |     |
| Comments: | All injection point | flows were adju | sted to ~30 scfl | after collecting rea | adings.                 |          |     |          |           |           |     |
|           |                     |                 |                  | O <sub>2</sub> In    | jection Sy              | ystem #2 |     |          |           |           |     |

|         |                |           |           | O <sub>2</sub> In | jection Sy | ystem #2   |           |  |  |
|---------|----------------|-----------|-----------|-------------------|------------|------------|-----------|--|--|
|         | Monitoring Poi | ints Log  |           |                   | Monitoring | Points Log |           |  |  |
| ID      | DTW            | DO (mg/L) | PID (ppm) | ID                | DTW        | DO (mg/L)  | PID (ppm) |  |  |
| MP-1-1D | 25.17          | 33.32     | 0.0       | MP-1-5            | NA         | NA         | NA        |  |  |
| MP-1-1S | 25.29          | 34.87     | 0.0       | MP-1-6            | 17.20      | 20.87      | 0.0       |  |  |
| MP-1-2D | 19.44          | 47.14     | 0.0       | MP-1-7            | 20.50      | 0.61       | 0.0       |  |  |
| MP-1-2S | 19.71          | 29.27     | 0.0       | MP-1-8            | 21.47      | 2.67       | 0.0       |  |  |
| MP-1-3D | 17.47          | 4.61      | 0.0       |                   |            |            |           |  |  |
| MP-1-3S | 17.46          | 7.74      | 0.0       |                   |            |            |           |  |  |
| MP-1-4D | 20.12          | 39.79     | 0.0       |                   |            |            |           |  |  |
| MP-1-4S | 19.94          | 7.02      | 0.0       |                   |            |            |           |  |  |
| 11      |                |           |           |                   |            |            |           |  |  |

Comments:

### SYSTEM #1

|                                           |                           |                                       | Da               | te: 5/20/2011 |
|-------------------------------------------|---------------------------|---------------------------------------|------------------|---------------|
|                                           |                           | OPERATIONAL NOTES                     |                  |               |
| GA5 Air Compressor                        |                           |                                       |                  |               |
| 1) Oil Level Checked with                 | system unloaded*          |                                       | Yes X            | No            |
| * Unload system, wait u                   |                           | re is less than 9 psi                 |                  |               |
| 2) Oil Level with system u                | nloaded                   | •                                     |                  |               |
|                                           | Low (red)                 | Normal (green)                        | X High (orange   | e)            |
| 3) Oil added                              |                           | Yes                                   |                  | No X          |
| 4) Oil changed                            |                           | Yes                                   |                  | No X          |
| 5) Oil filter changed                     |                           | Yes                                   | 1                | No X          |
| <ol><li>6) Air filter Changed</li></ol>   |                           | YesYes                                | 1                | No X          |
| <ol><li>Oil separator changed</li></ol>   |                           | Yes X                                 | 1                | No X          |
| 8) Terminal strips checked                |                           | Yes X                                 | I                | No            |
| AS-80 O <sub>2</sub> Generator            |                           |                                       |                  |               |
| 1) Prefilter changed                      |                           | Yes                                   | 1                | No X          |
| 2) Coalescing changed                     |                           | Yes<br>Yes                            | 1                | No X<br>No X  |
|                                           | GI                        | ENERAL SYSTEM NOTE                    | S                |               |
|                                           |                           |                                       |                  |               |
| <u>Trailer</u> 1) Performed general house | ekeeping (i.e. sweep, col | llect trash inside and out, etc Yes X |                  | No            |
|                                           |                           | 100                                   | •                |               |
| 2) Abnormal conditions ob                 | served (e.g. vandalism)   |                                       |                  |               |
|                                           |                           |                                       |                  |               |
| 3) Other major activities co              | ompleted                  |                                       |                  |               |
|                                           |                           |                                       |                  |               |
| 4) Supplies needed                        |                           |                                       |                  |               |
|                                           |                           |                                       |                  |               |
| 5) Visitors                               |                           |                                       |                  |               |
| <i>5)</i> VISIOIS                         |                           |                                       |                  |               |
|                                           |                           |                                       |                  |               |
| Record routine activities such as any     |                           |                                       | al               |               |
| transported off-site, oil/filter/gasket a | nd/or any other abnor     | mal operating conditions:             |                  |               |
|                                           |                           |                                       |                  |               |
| Found tire tracks running thru newly see  | eded areas at top of acce | ss road. Areas were raked o           | ut and reseeded. |               |
|                                           |                           |                                       |                  |               |
| Action Items:                             |                           |                                       |                  |               |
| Need to adjust discharge hoses from aut   | o drains that feed into w | vaste container as they are lea       | aking water.     |               |
|                                           |                           |                                       |                  |               |

## SYSTEM #1

| Tii<br>Wea<br>Outdoor Te<br>Inside Trailer | nte: me: tther: emperature: Temperature: ned By: | 13<br>Su<br>~8<br>~7 | /2011<br>320<br>nny<br>0°F<br>0°F<br>Ryan |                       |                          |                    |               |                 |            |         |               |  |
|--------------------------------------------|--------------------------------------------------|----------------------|-------------------------------------------|-----------------------|--------------------------|--------------------|---------------|-----------------|------------|---------|---------------|--|
|                                            | O <sub>2</sub> Gen                               | erator (Air          | Sep)                                      |                       |                          |                    | Compresso     | or (Kaesar Rot  | ary Screv  | w)      |               |  |
| Hours                                      |                                                  |                      | 219.9                                     |                       | Compres                  | sor Tank *         |               |                 | 100        | -       | (psi)         |  |
| Feed Air Pressi                            | ure *                                            |                      | 95                                        | (psi)                 |                          |                    | adings belov  | w are made fron |            | panel)  |               |  |
| Cycle Pressure                             | *                                                |                      | 70                                        | (psi)                 | Delivery<br>Element      | Air<br>Outlet Temp | perature      |                 | 118<br>176 | -       | (psi)<br>(°F) |  |
| Oxygen Receiv                              | ver Pressure *                                   |                      |                                           | 90<br>(psi)           | Running<br>Loading       |                    |               |                 | 242<br>161 | -       | (hours)       |  |
| Oxygen Purity * maximum reading            | g during loading cyc                             | ele                  | 95.6                                      | (percent)             |                          | reading during     | loading cycle |                 |            |         |               |  |
|                                            | Injection Ba                                     | nlr 1                |                                           | O <sub>2</sub> Ir     | njection Sy<br>Injection |                    |               |                 | Injection  | Pouls 2 |               |  |
| ID                                         | Depth Depth                                      | scfh                 | psi                                       | ID                    | Depth                    | scfh               | psi           | ID              | Depth      | scfh    | psi           |  |
| OW-1-1                                     | 95.5                                             | 30                   | 31                                        | OW-1-5S               | 67.3                     | 30                 | 18            | OW-1-9D         | 88.5       | 35      | 28            |  |
| OW-1-2                                     | 96.5                                             | 30                   | 32                                        | OW-1-6S               | 67.0                     | 35                 | 18            | OW-1-10D        | 87.2       | 35      | 28            |  |
| OW-1-3                                     | 96.3                                             | 30                   | 31                                        | OW-1-7S               | 66.9                     | 40                 | 18            | OW-1-11D        | 86.1       | 35      | 30            |  |
| OW-1-4                                     | 95.0                                             | 40                   | 31                                        | OW-1-8S               | 66.7                     | 35                 | 18            | OW-1-12D        | 85.3       | 30      | 29            |  |
| OW-1-5D                                    | 93.9                                             | 35                   | 30                                        | OW-1-9S               | 66.0                     | 30                 | 17            | OW-1-13D        | 84.7       | 20      | 28            |  |
| OW-1-6D                                    | 92.4                                             | 40                   | 30                                        | OW-1-10S              | 54.6                     | 30                 | 15            | OW-1-14D        | 84.1       | 35      | 30            |  |
| OW-1-7D                                    | 91.1                                             | 30                   | 29                                        | OW-1-11S              | 54.1                     | 30                 | 15            | OW-1-15D        | 83.3       | 30      | 29            |  |
| OW-1-8D                                    | 89.6                                             | 30                   | 29                                        | OW-1-12S              | 53.6                     | 30                 | 15            | OW-1-16D        | 82.5       | 50      | 16            |  |
| Comments:                                  | All injection point                              | flows were adju      | sted to ~30 scfl                          | n after collecting re | adings.                  |                    |               |                 |            |         |               |  |

### SYSTEM #1

Hempstead Intersection Street Former MGP Site Nassau County, New York

|           |              |      |     |                   |            |          |     | Date:     |           | 5/27/2011 |     |
|-----------|--------------|------|-----|-------------------|------------|----------|-----|-----------|-----------|-----------|-----|
|           |              |      |     |                   |            |          |     |           |           |           |     |
|           |              |      |     | O <sub>2</sub> In | jection Sy | ystem #1 |     |           |           |           |     |
|           | Injection Ba | nk 4 |     |                   | Injection  | Bank 5   |     |           | Injection | Bank 6    |     |
| ID        | Depth        | scfh | psi | ID                | Depth      | scfh     | psi | ID        | Depth     | scfh      | psi |
| OW-1-13S  | 53.1         | 35   | 13  | OW-1-17D          | 79.5       | 40       | 14  | OW-1-21S  | 49.3      | 30        | 12  |
| OW-1-14S  | 52.7         | 45   | 14  | OW-1-18D          | 78.3       | 30       | 27  | OW-1-22S  | 49.3      | 35        | 12  |
| OW-1-15S  | 52.2         | 40   | 13  | OW-1-19D          | 78.9       | 25       | 28  | OW-1-23S  | 48.8      | 25        | 12  |
| OW-1-16SR | 51.8         | 40   | 24  | OW-1-20D          | 79.5       | 30       | 28  | OW-1-24S  | 48.4      | 30        | 13  |
| OW-1-17S  | 50.7         | 30   | 24  | OW-1-21D          | 79.5       | 30       | 27  | OW-1-25S  | 48.8      | 30        | 13  |
| OW-1-18S  | 50.2         | 30   | 13  | OW-1-22D          | 79.5       | 30       | 27  | OW-1-26SR | 48.3      | 30        | 13  |
| OW-1-19S  | 49.7         | 35   | 13  | OW-1-23D          | 78.7       | 30       | 27  | OW-1-27S  | 48.3      | 30        | 13  |
| OW-1-20S  | 49.3         | 45   | 12  | OW-1-24D          | 78.2       | 30       | 27  | OW-1-28S  | 48.3      | 35        | 13  |

Comments: All injection point flows were adjusted to ~30 scfh after collecting readings.

|          |              |      |     | O <sub>2</sub> In | jection S | ystem #1 |     |          |           |        |     |
|----------|--------------|------|-----|-------------------|-----------|----------|-----|----------|-----------|--------|-----|
|          | Injection Ba | nk 7 |     |                   | Injection | Bank 8   |     |          | Injection | Bank 9 |     |
| ID       | Depth        | scfh | psi | ID                | Depth     | scfh     | psi | ID       | Depth     | scfh   | psi |
| OW-1-25D | 78.1         | 30   | 28  | OW-1-29S          | 48.5      | 25       | 12  | OW-1-33D | 83.2      | 30     | 30  |
| OW-1-26D | 78.1         | 40   | 35  | OW-1-30S          | 48.8      | 25       | 12  | OW-1-34D | 84.5      | 30     | 30  |
| OW-1-27D | 77.9         | 45   | 40  | OW-1-31S          | 49.3      | 30       | 13  | OW-1-35D | 85.0      | 50     | 28  |
| OW-1-28D | 78.0         | 35   | 37  | OW-1-32S          | 49.3      | 30       | 12  | OW-1-36D | 85.0      | 35     | 29  |
| OW-1-29D | 78.4         | 30   | 37  | OW-1-33S          | 49.7      | 25       | 12  | OW-1-37D | 84.0      | 20     | 29  |
| OW-1-30D | 79.0         | 35   | 40  | OW-1-34S          | 50.1      | 25       | 12  | OW-1-38D | 82.0      | 40     | 37  |
| OW-1-31D | 80.5         | 30   | 30  | OW-1-35S          | 50.3      | 25       | 12  | OW-1-39D | 78.0      | 30     | 28  |
| OW-1-32D | 81.6         | 30   | 28  | OW-1-36S          | 50.3      | 25       | 12  | OW-1-40D | 76.0      | 50     | 30  |

Comments: All injection point flows were adjusted to ~30 scfh after collecting readings.

#### SYSTEM #1

Hempstead Intersection Street Former MGP Site Nassau County, New York

|          |               |       |     |                   |            |          |     | Date:    |           | 5/27/2011 | -   |
|----------|---------------|-------|-----|-------------------|------------|----------|-----|----------|-----------|-----------|-----|
|          |               |       |     | O <sub>2</sub> In | jection Sy | ystem #1 |     |          |           |           |     |
|          | Injection Bar | nk 10 |     |                   | Injection  | Bank 11  |     |          | Injection | Bank 12   |     |
| ID       | Depth         | scfh  | psi | ID                | Depth      | scfh     | psi | ID       | Depth     | scfh      | psi |
| OW-1-37S | 50.5          | 35    | 12  | OW-1-41D          | 73.6       | 25       | 24  | OW-1-43  | 67.4      | 30        | 19  |
| OW-1-38S | 50.6          | 30    | 12  | OW-1-42D          | 71.0       | 25       | 23  | OW-1-44  | 66.6      | 30        | 18  |
| OW-1-39S | 50.7          | 35    | 12  | OW-1-45           | 65.7       | 25       | 20  | OW-1-51R | 60.6      | 30        | 17  |
| OW-1-40S | 51.1          | 30    | 13  | OW-1-46           | 64.3       | 25       | 18  | OW-1-52  | 59.3      | 40        | 16  |
| OW-1-41S | 51.5          | 30    | 13  | OW-1-47           | 63.4       | 30       | 18  | OW-1-53  | 60.0      | 30        | 16  |
| OW-1-42S | 51.3          | 30    | 12  | OW-1-48           | 62.5       | 30       | 18  | OW-1-54  | 60.0      | 25        | 16  |
|          |               |       |     | OW-1-49           | 61.5       | 30       | 18  |          |           |           |     |
|          |               |       |     | OW-1-50           | 61.0       | 40       | 18  |          |           |           |     |

Comments: All injection point flows were adjusted to ~30 scfh after collecting readings.

|         |                |           |           | O <sub>2</sub> In | ystem #2          |            |           |  |  |
|---------|----------------|-----------|-----------|-------------------|-------------------|------------|-----------|--|--|
|         | Monitoring Poi | ints Log  |           |                   | <b>Monitoring</b> | Points Log |           |  |  |
| ID      | DTW            | DO (mg/L) | PID (ppm) | ID                | DTW               | DO (mg/L)  | PID (ppm) |  |  |
| MP-1-1D | 24.97          | 26.39     | 0.0       | MP-1-5            | NA                | NA         | NA        |  |  |
| MP-1-1S | 25.10          | 17.23     | 0.0       | MP-1-6            | 19.25             | 9.48       | 0.0       |  |  |
| MP-1-2D | 19.39          | 25.24     | 0.0       | MP-1-7            | 20.49             | 1.65       | 0.0       |  |  |
| MP-1-2S | 19.72          | 13.41     | 0.0       | MP-1-8            | 21.53             | 5.21       | 0.0       |  |  |
| MP-1-3D | 17.48          | 9.04      | 0.0       |                   |                   |            |           |  |  |
| MP-1-3S | 17.50          | 7.68      | 0.0       |                   |                   |            |           |  |  |
| MP-1-4D | 20.04          | 48.14     | 0.0       |                   |                   |            |           |  |  |
| MP-1-4S | 20.01          | 6.12      | 0.0       |                   |                   |            |           |  |  |

DO readings were collected at the following depths: MP-1-1S (96 feet), MP-1-1D (66 feet), MP-1-2S (81 feet), MP-1-2D (46 feet), MP-1-3S (79 feet), MP-1-3D (49 feet), MP-1-4S (83 feet), MP-1-4D (53 feet), MP-1-5 (78 feet), MP-1-6 (61 feet), MP-1-7 (64 feet) and MP-1-8 (58 feet).

Monitoing point MP-1-5 is covered by construction materials and not accessible.

Comments:

## SYSTEM #1

|                                |                      |                        |                                  |       | Date:       | 5/27/2011 |  |
|--------------------------------|----------------------|------------------------|----------------------------------|-------|-------------|-----------|--|
|                                |                      |                        | OPERATIONAL NOTES                | 1     |             |           |  |
| GA5 Air Compressor             |                      |                        | OI ERATIONAL NOTES               |       |             |           |  |
|                                | evel Checked with s  | vstem unloaded*        |                                  | Yes   | X           | No        |  |
|                                |                      |                        | sure is less than 9 psi          |       |             |           |  |
|                                | vel with system un   |                        | •                                |       |             |           |  |
|                                |                      | Low (red)              | Normal (green)                   | X Hig | gh (orange) |           |  |
| 3) Oil ad                      |                      |                        | Yes                              |       | No          | X         |  |
| 4) Oil ch                      |                      |                        | Yes                              |       | No          |           |  |
|                                | ter changed          |                        | Yes                              |       | No          |           |  |
|                                | ter Changed          |                        | Yes                              |       | No_         |           |  |
|                                | parator changed      |                        | Yes                              |       | No          |           |  |
| 8) Termi                       | nal strips checked   |                        | Yes X                            |       | No          |           |  |
| AS-80 O <sub>2</sub> Generator |                      |                        |                                  |       |             |           |  |
| 1) Prefilt                     | er changed           |                        | Yes                              |       | No          | X         |  |
|                                | scing changed        |                        | Yes<br>Yes                       |       | No          | X         |  |
|                                |                      | (                      | GENERAL SYSTEM NOT               | FS    |             |           |  |
|                                |                      |                        |                                  |       |             |           |  |
| <u>Trailer</u>                 |                      |                        |                                  |       |             |           |  |
| 1) Perfor                      | med general housel   | keeping (i.e. sweep, o | collect trash inside and out, et | tc.)  |             |           |  |
|                                |                      |                        | Yes X                            |       | No          |           |  |
| 2) Abore                       |                      |                        | -\                               |       |             |           |  |
| 2) Adnor                       | mai conditions obs   | erved (e.g. vandalism  | 1)                               |       |             |           |  |
| -                              |                      |                        |                                  |       |             |           |  |
| 3) Other                       | major activities cor | npleted                |                                  |       |             |           |  |
| , · · · · · · · ·              |                      |                        |                                  |       |             |           |  |
|                                |                      |                        |                                  |       | -           |           |  |
| 4) Suppli                      | ies needed           |                        |                                  |       |             |           |  |
|                                |                      |                        |                                  |       |             |           |  |
|                                |                      |                        |                                  |       |             |           |  |
| 5) Visito:                     | rs                   |                        |                                  |       |             |           |  |
|                                |                      |                        |                                  |       |             |           |  |
|                                |                      |                        |                                  |       |             |           |  |
|                                |                      |                        | mpling, maintenance, mate        |       |             |           |  |
| transported off-site,          | oil/filter/gasket an | d/or any other abno    | ormal operating conditions:      |       |             |           |  |
|                                |                      |                        |                                  |       |             |           |  |
|                                |                      |                        |                                  |       |             |           |  |
|                                |                      |                        |                                  |       |             |           |  |
|                                |                      |                        |                                  |       |             |           |  |
| Action Items:                  |                      |                        |                                  |       |             |           |  |
|                                |                      |                        |                                  |       |             |           |  |
|                                |                      |                        |                                  |       |             |           |  |
|                                |                      |                        |                                  |       |             |           |  |
|                                |                      |                        |                                  |       |             |           |  |
|                                |                      |                        |                                  |       |             |           |  |

### SYSTEM #1

| Wea<br>Outdoor To<br>Inside Trailer | ne:<br>other:<br>cmperature: | -<br>-<br>-<br>-<br>- |                      |                                     |                                                         |                      |                      |                                     |                              |                      |                      |  |
|-------------------------------------|------------------------------|-----------------------|----------------------|-------------------------------------|---------------------------------------------------------|----------------------|----------------------|-------------------------------------|------------------------------|----------------------|----------------------|--|
| O <sub>2</sub> Generator (AirSep)   |                              |                       |                      |                                     |                                                         |                      | Compresso            | or (Kaesar Rot                      | ary Screv                    | v)                   |                      |  |
| Hours                               |                              |                       | 589.4                | <del>-</del>                        | Compres                                                 | sor Tank *           |                      |                                     | 120                          | -                    | (psi)                |  |
| Feed Air Press                      | ure *                        |                       | 70                   | (psi)                               | (readings below are made from                           |                      |                      |                                     |                              | oanel)               | (psi)                |  |
| Cycle Pressure                      | *                            |                       | 60                   | (psi)                               | Element                                                 | Outlet Temp          | erature              |                                     | 112                          | -                    | (°F)                 |  |
| Oxygen Receiv                       | ver Pressure *               |                       |                      | 110 (psi)                           | Running Hours  Loading Hours                            |                      |                      |                                     |                              | 737<br>529           |                      |  |
| Oxygen Purity * maximum readin      | g during loading cyc         | ile                   | 94.7                 | (percent)                           |                                                         | n reading during     | loading cycle        |                                     |                              |                      |                      |  |
|                                     | Injection Ba                 | nk 1                  |                      |                                     | Injection System #1  Injection Bank 2  Injection Bank 3 |                      |                      |                                     |                              |                      |                      |  |
| ID                                  | Depth                        | scfh                  | psi                  | ID                                  | Depth                                                   | scfh                 | psi                  | ID                                  | Depth                        | scfh                 | psi                  |  |
| OW-1-1                              | 95.5                         | 30                    | 28                   | OW-1-5S                             | 67.3                                                    | 40                   | 18                   | OW-1-9D                             | 88.5                         | 38                   | 27                   |  |
|                                     |                              |                       | l                    |                                     |                                                         |                      |                      |                                     |                              |                      |                      |  |
| OW-1-2                              | 96.5                         | 30                    | 32                   | OW-1-6S                             | 67.0                                                    | 40                   | 18                   | OW-1-10D                            | 87.2                         | 38                   | 28                   |  |
| OW-1-2                              | 96.5<br>96.3                 | 30                    | 32                   | OW-1-6S<br>OW-1-7S                  | 67.0<br>66.9                                            | 40                   | 18                   | OW-1-10D                            | 87.2<br>86.1                 | 38                   | 28                   |  |
|                                     |                              |                       |                      |                                     |                                                         |                      |                      |                                     |                              |                      |                      |  |
| OW-1-3                              | 96.3                         | 35                    | 32                   | OW-1-7S                             | 66.9                                                    | 40                   | 18                   | OW-1-11D                            | 86.1                         | 35                   | 30                   |  |
| OW-1-3                              | 96.3<br>95.0                 | 35<br>40              | 32                   | OW-1-7S                             | 66.9                                                    | 40                   | 18                   | OW-1-11D                            | 86.1<br>85.3                 | 35                   | 30                   |  |
| OW-1-3<br>OW-1-4<br>OW-1-5D         | 96.3<br>95.0<br>93.9         | 35<br>40<br>40        | 32<br>31<br>30       | OW-1-7S<br>OW-1-8S<br>OW-1-9S       | 66.9<br>66.7<br>66.0                                    | 40<br>35<br>38       | 18<br>19<br>19       | OW-1-11D OW-1-12D OW-1-13D          | 86.1<br>85.3<br>84.7         | 35<br>40<br>40       | 30<br>29<br>29       |  |
| OW-1-3 OW-1-4 OW-1-5D OW-1-6D       | 96.3<br>95.0<br>93.9<br>92.4 | 35<br>40<br>40<br>40  | 32<br>31<br>30<br>29 | OW-1-7S  OW-1-8S  OW-1-9S  OW-1-10S | 66.9<br>66.7<br>66.0<br>54.6                            | 40<br>35<br>38<br>40 | 18<br>19<br>19<br>14 | OW-1-11D OW-1-12D OW-1-13D OW-1-14D | 86.1<br>85.3<br>84.7<br>84.1 | 35<br>40<br>40<br>35 | 30<br>29<br>29<br>30 |  |

### SYSTEM #1

Hempstead Intersection Street Former MGP Site Nassau County, New York

|           |              |      |     |                   |            |          |     | Date:     |           | 6/23/2011 |     |
|-----------|--------------|------|-----|-------------------|------------|----------|-----|-----------|-----------|-----------|-----|
|           |              |      |     |                   |            |          |     |           |           |           |     |
|           |              |      |     | O <sub>2</sub> In | jection Sy | ystem #1 |     |           |           |           |     |
|           | Injection Ba | nk 4 |     |                   | Injection  | Bank 5   |     |           | Injection | Bank 6    |     |
| ID        | Depth        | scfh | psi | ID                | Depth      | scfh     | psi | ID        | Depth     | scfh      | psi |
| OW-1-13S  | 53.1         | 30   | 27  | OW-1-17D          | 79.5       | 40       | 12  | OW-1-21S  | 49.3      | 30        | 11  |
| OW-1-14S  | 52.7         | 30   | 32  | OW-1-18D          | 78.3       | 40       | 12  | OW-1-22S  | 49.3      | 40        | 12  |
| OW-1-15S  | 52.2         | 40   | 35  | OW-1-19D          | 78.9       | 40       | 12  | OW-1-23S  | 48.8      | 35        | 12  |
| OW-1-16SR | 51.8         | 30   | 38  | OW-1-20D          | 79.5       | 35       | 12  | OW-1-24S  | 48.4      | 35        | 12  |
| OW-1-17S  | 50.7         | 40   | 37  | OW-1-21D          | 79.5       | 30       | 12  | OW-1-25S  | 48.8      | 30        | 13  |
| OW-1-18S  | 50.2         | 40   | 40  | OW-1-22D          | 79.5       | 30       | 12  | OW-1-26SR | 48.3      | 30        | 13  |
| OW-1-19S  | 49.7         | 40   | 27  | OW-1-23D          | 78.7       | 35       | 12  | OW-1-27S  | 48.3      | 35        | 13  |
| OW-1-20S  | 49.3         | 40   | 28  | OW-1-24D          | 78.2       | 40       | 13  | OW-1-28S  | 48.3      | 30        | 13  |

Comments: All injection point flows were adjusted to ~30 scfh after collecting readings.

| O <sub>2</sub> Injection System #1 |       |      |     |                  |       |      |     |                  |       |      |     |
|------------------------------------|-------|------|-----|------------------|-------|------|-----|------------------|-------|------|-----|
| Injection Bank 7                   |       |      |     | Injection Bank 8 |       |      |     | Injection Bank 9 |       |      |     |
| ID                                 | Depth | scfh | psi | ID               | Depth | scfh | psi | ID               | Depth | scfh | psi |
| OW-1-25D                           | 78.1  | 30   | 27  | OW-1-29S         | 48.5  | 30   | 12  | OW-1-33D         | 83.2  | 35   | 30  |
| OW-1-26D                           | 78.1  | 50   | 33  | OW-1-30S         | 48.8  | 40   | 12  | OW-1-34D         | 84.5  | 35   | 29  |
| OW-1-27D                           | 77.9  | 90   | 36  | OW-1-31S         | 49.3  | 30   | 12  | OW-1-35D         | 85.0  | 50   | 30  |
| OW-1-28D                           | 78.0  | 35   | 38  | OW-1-32S         | 49.3  | 30   | 12  | OW-1-36D         | 85.0  | 30   | 30  |
| OW-1-29D                           | 78.4  | 30   | 37  | OW-1-33S         | 49.7  | 30   | 13  | OW-1-37D         | 84.0  | 30   | 29  |
| OW-1-30D                           | 79.0  | 80   | 40  | OW-1-34S         | 50.1  | 30   | 12  | OW-1-38D         | 82.0  | 50   | 35  |
| OW-1-31D                           | 80.5  | 55   | 28  | OW-1-35S         | 50.3  | 30   | 13  | OW-1-39D         | 78.0  | 30   | 27  |
| OW-1-32D                           | 81.6  | 30   | 28  | OW-1-36S         | 50.3  | 30   | 12  | OW-1-40D         | 76.0  | 45   | 30  |

Comments: All injection point flows were adjusted to ~30 scfh after collecting readings.

## SYSTEM #1

Hempstead Intersection Street Former MGP Site Nassau County, New York

|          |                                    |       |     |          |           |         |     | Date:    |           | 6/23/2011 |     |
|----------|------------------------------------|-------|-----|----------|-----------|---------|-----|----------|-----------|-----------|-----|
|          | O <sub>2</sub> Injection System #1 |       |     |          |           |         |     |          |           |           |     |
|          | Injection Bar                      | nk 10 |     |          | Injection | Bank 11 |     |          | Injection | Bank 12   |     |
| ID       | Depth                              | scfh  | psi | ID       | Depth     | scfh    | psi | ID       | Depth     | scfh      | psi |
| OW-1-37S | 50.5                               | 30    | 12  | OW-1-41D | 73.6      | 35      | 24  | OW-1-43  | 67.4      | 25        | 20  |
| OW-1-38S | 50.6                               | 30    | 12  | OW-1-42D | 71.0      | 40      | 22  | OW-1-44  | 66.6      | 25        | 18  |
| OW-1-39S | 50.7                               | 40    | 12  | OW-1-45  | 65.7      | 40      | 19  | OW-1-51R | 60.6      | 35        | 17  |
| OW-1-40S | 51.1                               | 30    | 13  | OW-1-46  | 64.3      | 25      | 18  | OW-1-52  | 59.3      | 30        | 13  |
| OW-1-41S | 51.5                               | 35    | 12  | OW-1-47  | 63.4      | 30      | 18  | OW-1-53  | 60.0      | 30        | 17  |
| OW-1-42S | 51.3                               | 30    | 13  | OW-1-48  | 62.5      | 30      | 18  | OW-1-54  | 60.0      | 85        | 17  |
|          |                                    |       |     | OW-1-49  | 61.5      | 30      | 17  |          |           |           |     |
|          |                                    |       |     | OW-1-50  | 61.0      | 30      | 17  |          |           |           |     |

Comments: All injection point flows were adjusted to ~30 scfh after collecting readings.

| O <sub>2</sub> Injection System #2          |       |           |           |        |       |           |           |  |  |  |
|---------------------------------------------|-------|-----------|-----------|--------|-------|-----------|-----------|--|--|--|
| Monitoring Points Log Monitoring Points Log |       |           |           |        |       |           |           |  |  |  |
| ID                                          | DTW   | DO (mg/L) | PID (ppm) | ID     | DTW   | DO (mg/L) | PID (ppm) |  |  |  |
| MP-1-1D                                     | 25.27 | 9.39      | 1.6       | MP-1-5 | 25.03 | 10.39     | 104.2     |  |  |  |
| MP-1-1S                                     | 25.49 | 8.51      | 3.0       | MP-1-6 | 17.53 | 9.20      | 41.2      |  |  |  |
| MP-1-2D                                     | 19.72 | 21.97     | 2.8       | MP-1-7 | 20.85 | 1.07      | 7.2       |  |  |  |
| MP-1-2S                                     | 19.97 | 12.03     | 5.4       | MP-1-8 | 21.82 | 21.06     | 11.4      |  |  |  |
| MP-1-3D                                     | 17.77 | 47.52     | 8.5       |        |       |           |           |  |  |  |
| MP-1-3S                                     | 17.78 | 21.14     | 3.3       |        |       |           |           |  |  |  |
| MP-1-4D                                     | 20.46 | 20.36     | 54.5      |        |       |           |           |  |  |  |
| MP-1-4S                                     | 20.29 | 7.16      | 279.7     |        |       |           |           |  |  |  |

DO readings were collected at the following depths: MP-1-1S (96 feet), MP-1-1D (66 feet), MP-1-2S (81 feet), MP-1-2D (46 feet), MP-1-3D (49 feet), MP-1-3D (49 feet), MP-1-4S (83 feet), MP-1-4D (53 feet), MP-1-5 (78 feet), MP-1-6 (61 feet), MP-1-7 (64 feet) and MP-1-8 (58 feet).

## SYSTEM #1

|                                                                                                                                   |                           | Date:            | 6/23/2011 |
|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------|-----------|
|                                                                                                                                   | OPERATIONAL NOTES         |                  |           |
| GA5 Air Compressor                                                                                                                |                           |                  |           |
| 1) Oil Level Checked with system unloaded*                                                                                        |                           | Yes X No         | )         |
| * Unload system, wait until Delivery Air Pressu                                                                                   | ure is less than 9 psi    |                  |           |
| 2) Oil Level with system unloaded                                                                                                 | N 1 ( )                   | II' : 1 ( )      |           |
| 3) Oil added                                                                                                                      | Normal (green)            | High (orange) No | _         |
| 4) Oil changed                                                                                                                    | Yes X<br>Yes              | No X             | _         |
| 5) Oil filter changed                                                                                                             | Yes                       | No X             | -         |
| 6) Air filter Changed                                                                                                             | Yes                       | No X             | _         |
| 7) Oil separator changed                                                                                                          | Yes X                     | No X             | _         |
| 8) Terminal strips checked                                                                                                        | Yes X                     | No               | _         |
| AS-80 O <sub>2</sub> Generator                                                                                                    |                           |                  |           |
| 1) Prefilter changed                                                                                                              | Yes                       | No X             |           |
| 2) Coalescing changed                                                                                                             | Yes<br>Yes                | No X<br>No X     | -         |
| G                                                                                                                                 | ENERAL SYSTEM NOTES       |                  |           |
|                                                                                                                                   |                           |                  |           |
| <u>Trailer</u>                                                                                                                    |                           |                  |           |
| 1) Performed general housekeeping (i.e. sweep, co                                                                                 |                           | No               |           |
|                                                                                                                                   | Yes X                     | No               | _         |
| 2) Abnormal conditions observed (e.g. vandalism)                                                                                  | )                         |                  |           |
| · · · · · · · · · · · · · · · · · · ·                                                                                             |                           |                  |           |
|                                                                                                                                   |                           |                  |           |
| 3) Other major activities completed                                                                                               |                           |                  |           |
| -                                                                                                                                 |                           |                  |           |
| 4) Supplies needed                                                                                                                |                           |                  |           |
|                                                                                                                                   |                           |                  |           |
| _                                                                                                                                 |                           |                  |           |
| 5) Visitors                                                                                                                       |                           |                  |           |
|                                                                                                                                   |                           |                  |           |
|                                                                                                                                   |                           |                  |           |
| Record routine activities such as any alarm/shutdowns, san transported off-site, oil/filter/gasket and/or any other abnormalists. |                           |                  |           |
| transported on-site, on/inter/gasket and/or any other abnor                                                                       | mai operating conditions. |                  |           |
|                                                                                                                                   |                           |                  |           |
|                                                                                                                                   |                           |                  |           |
|                                                                                                                                   |                           |                  |           |
| A 12 T1                                                                                                                           |                           |                  |           |
| Action Items:                                                                                                                     |                           |                  |           |
|                                                                                                                                   |                           |                  |           |
|                                                                                                                                   |                           |                  |           |
|                                                                                                                                   |                           |                  |           |
|                                                                                                                                   |                           |                  |           |